
Technical Report

CMU/SEI-92-TR-20
ESC-92-TR-020

Carnegie-Mellon University

Software Engineering Institute

Software Size Measurement:
A Framework for Counting
Source Statements

Robert E. Park
with the Size Subgroup

of the Software Metrics Definition Working Group
and the Software Process Measurement Project Team

September 1992

f\d/\2G$m

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment or administration
of its programs on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Educational
Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state or local laws, or executive orders

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age. veteran status, sexual orientation or in violation of federal, state or local laws, or executive orders While the federal government does
continue to exclude gays, lesbians and bisexuals from receiving ROTC scholarships or serving in the military, ROTC classes on this campus are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh. Pa.
15213. telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pa 15213. telephone
(412)268-2056.

Technical Report
CMU/SEI-92-TR-20

ESC-TR-92-20
September 1992

Software Size Measurement:
A Framework for Counting

Source Statements

Robert E. Park
with the Size Subgroup of the Software Metrics Definition Working Group

and the Software Process Measurement Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. OTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

List of Figures v

Preface ix

Acknowledgments xl

1. Introduction 1
1.1. Scope 1
1.2. Objective and Audience 2
1.3. Relationship to Other Work 2
1.4. Endorsement of Specific Measures 3

2. A Framework for Size Definition 5
2.1. Definition Checklists 7
2.2. Supplemental Rules Forms 9
2.3. Recording and Reporting Forms 10

3. A Checklist for Defining Source Statement Counts 13
3.1. Describing Statement Counts 13
3.2. Modifying the Checklist to Meet Special Needs 21
3.3. Assigning Rules for Counting and Classifying Statement Types 21

4. Size Attributes and Values: Issues to Consider When Creating
Definitions 23
4.1. Statement Type 23

4.1.1. Executable statements 24
4.1.2. Declarations 24
4.1.3. Compiler directives 26
4.1.4. Comments 27
4.1.5. Blank lines 28
4.1.6. Other statement types 28
4.1.7. Order of precedence 28
4.1.8. General guidance 29

4.2. How Produced 29
4.2.1. Programmed 30
4.2.2. Generated with source code generators 30
4.2.3. Converted with automated translators 30
4.2.5. Modified 32
4.2.6. Removed 34

4.3. Origin 34
4.3.1. New work: no prior existence 35
4.3.2. Prior work 35

4.4. Usage 37
4.4.1. In or as part of the primary product 38
4.4.2. External to or in support of the primary product 38

CMU/SEI-92-TR-20

4.5. Delivery 39
4.5.1. Delivered as source 39
4.5.2. Delivered in compiled or executable form, but not as source 40
4.5.3. Not delivered 41

4.6. Functionality 42
4.6.1. Operative statements 42
4.6.2. Inoperative statements (dead, bypassed, unused,

unreferenced, or unaccessed) 42
4.7. Replications 45

4.7.1. Master source statements (originals) 45
4.7.2. Physical replicates of master statements, stored in the

master code 46
4.7.3. Copies inserted, instantiated, or expanded when compiling

or linking 46
4.7.4. Postproduction replicates 47

4.8. Development Status 48
4.9. Language 49
4.10. Clarifications (general) 50

4.10.1. Nulls, continues, and no-ops 51
4.10.2. Empty statements 51
4.10.3. Statements that instantiate generics 52
4.10.4. Begin...end and {...} pairs used as executable statements 52
4.10.5. Begin...end and {...} pairs that delimit (sub)program bodies 52
4.10.6. Logical expressions used as test conditions 53
4.10.7. Expression evaluations used as subprogram arguments 53
4.10.8. End symbols that terminate executable statements 53
4.10.9. End symbols that terminate declarations or (sub)program

bodies 54
4.10.10. Then, else, and otherwise symbols 54
4.10.11. Elseif and elsif statements 54
4.10.12. Keywords like procedure division, interface, and

implementation 54
4.10.13 Labels (branching destinations) on lines by themselves 54

4.11. Clarifications for Specific Languages 55
4.11.1. Stylistic use of braces 55
4.11.2. Expression statements 56
4.11.3. Format statements 56

Using the Checklist to Define Size Measures—Nine Examples 59
5.1. Physical Source Lines—A Basic Definition 60
5.2. Logical Source Statements—A Basic Definition 66
5.3. Data Specifications—Getting Data for Special Purposes 72

5.3.1. Specifying data for project tracking 72
5.3.2. Specifying data for project analysis 78
5.3.3. Specifying data for reuse measurement 82
5.3.4. Combining data specifications 85
5.3.5. Counting dead code 88

CMU/SEI-92-TR-20

5.3.6. Relaxing the rule of mutual exclusivity 88
5.3.7. Asking for lower level details—subsets of attribute values 89

5.4. Other Definitions and Data Specifications 90
5.5. Other Measures 91

6. Defining the Counting Unit 93
6.1. Statement Delimiters 93
6.2. Logical Source Statements 93
6.3. Physical Source Lines 97
6.4. Physical and Logical Measures are Different Measures 99
6.5. Conclusion and Recommendation 101

7. Reporting Other Rules and Practices—The Supplemental Forms 103
7.1. Physical Source Lines 104
7.2. Logical Source Statements 105
7.3. Dead Code 106

8. Recording Measurement Results 107
8.1. Example 1—Development Planning and Tracking 108
8.2. Example 2—Planning and Estimating Future Products 109
8.3. Example 3—Reuse Tracking, Productivity Analysis, and Quality

Normalization 110
8.4. Example A—Support for Alternative Definitions and Recording Needs 112

9. Reporting and Requesting Measurement Results 115
9.1. Summarizing Totals for Individual Attributes 115
9.2. Summarizing Totals for Data Spec A (Project Tracking) 119
9.3. A Structured Process for Requesting Summary Reports 120
9.4. Requesting Arrayed Data 120
9.5. Requesting Individual (Marginal) Totals 126

10. Meeting the Needs of Different Users 129

11. Applying Size Definitions to Builds, Versions, and Releases 133

12. Recommendations for Initiating Size Measurement 135
12.1. Start with Physical Source Lines 135
12.2. Use a Checklist-Based Process to Define, Record, and Report Your

Measurement Results 137
12.3. Report Separate Results for Questionable Elements 138
12.4. Look for Opportunities to Add Other Measures 138
12.5. Use the Same Definitions for Estimates that You Use for

Measurement Reports 139
12.6. Dealing with Controversy 139
12.7. From Definition to Action—A Concluding Note 140

References 141

Appendix A: Acronyms and Terms 143
A.1. Acronyms 143
A.2. Terms Used 144

CMU/SEI-92-TR-20 iii

Appendix B: Candidate Size Measures 147

Appendix C: Selecting Measures for Definition—Narrowing the Field 153
C.1. The Choices Made 153
C.2. The Path Followed 155

Appendix D: Using Size Measures—Illustrations and Examples 157
D.1. Project Tracking 158
D.2. Exposing Potential Cost Growth 159
D.3. Gaining Insight into Design and Coding Practices 160
D.4. Early Warnings: The Need for Schedule Replanning 162
D.5. Detecting Deferred Development 164
D.6. Indications of Design Turbulence 165
D.7. Normalizing Quality Measures 166

Appendix E: Forms for Reproduction 169

iv CMU7SEI-92-TR-20

List of Figures

Figure 2-1 Size Definition Framework—A Partial View 6

Figure 2-2 Example of One Page of a Completed Checklist 8

Figure 2-3 Application of Definition, Recording, and Reporting Forms to a
Project 11

Figure 3-1 A Data Array for Project Tracking 14

Figure 3-2 Definition Checklist for Source Statement Counts 16

Figure 4-1 The Statement Type Attribute 24

Figure 4-2 The How Produced Attribute 30

Figure 4-3 The Origin Attribute 35

Figure 4-4 Relationships Between Origin and How Produced 37

Figure 4-5 The Usage Attribute 38

Figure 4-6 The Delivery Attribute 39

Figure 4-7 The Functionality Attribute 42

Figure 4-8 The Replications Attribute 45

Figure 4-9 The Development Status Attribute 48

Figure 4-10 The Language Attribute 50

Figure 4-11 Clarifications—Inclusion and Statement Typing Rules for
Program Elements 50

Figure 5-1 Definition for Physical Source Lines of Code (SLOC) 61

Figure 5-2 Definition for Logical Source Statements 67

Figure 5-3 Example Data Array for Project Tracking 73

Figure 5-4 Data Spec A (Project Tracking) 74

Figure 5-5 The Case of Disappearing Reuse 76

Figure 5-6 Specification for a Simplified Data Array 77

Figure 5-7 Simplified Data Array for Project Tracking 78

Figure 5-8 Example Data Array for Project Analysis 79

Figure 5-9 Data Spec B (Project Analysis) 80

Figure 5-10 Data Spec C (Reuse Measurement) 83

Figure 5-11 Data Spec B+C (Combined Specifications) 86

Figure 5-12 Dead Code Data Spec 88

Figure 5-13 Specification for Counts of Textual Comments 89

Figure 5-14 Getting Data on Subsets of Attribute Values 90

Figure 6-1 . Poll Results—Logical Source Statements 96

CMU/SEI-92-TR-20

Figure 6-2 Poll Results—Physical Source Lines 98

Figure 7-1 Rules Form—Counting Physical Source Lines 104

Figure 7-2 Rules Form—Counting Logical Source Statements 105

Figure 7-3 Practices Used to Identify Inoperative Elements 106

Figure 8-1 Recording Form for Data Spec A 108

Figure 8-2 Recording Form for Data Spec B 109

Figure 8-3 Recording Form for Data Spec C 111

Figure 8-4 A Generalized Form for Recording Measurements of Source
Code Size 113

Figure 9-1 Example Summary Size Report 116

Figure 9-2 Summary Reporting Form for Data Spec A (Project Tracking) 119

Figure 9-3 Using Definition Checklists to Specify Special Information
Needs 120

Figure 9-4 Request for a Report of Development Status vs. How
Produced 122

Figure 9-5 Request for a Report of Statement Type vs. Programming
Language 124

Figure 9-6 Request Specification for a Summary Report of Attribute
Totals 127

Figure 10-1 Use of Checklists to Construct Common Definitions While
Meeting the Needs of Different Measurement Users 130

Figure 10-2 Steps for Constructing and Using Definitions for Source Code
Size 131

Figure 11-1 Applying Size Definitions to Builds, Versions, and Releases 134

Figure B-1 Software Size—A Partial Listing of Targets for Measurement 148

Figure B-2 Using Inputs and Outputs to Identify Activities 152

Figure C-1 Priorities for Definition 154

Figure C-2 The Path Followed When Applying the Framework to
Construct Specific Definitions and Data Specifications 156

Figure D-1 Tracking Development Progress 158

Figure D-2 Exposing Potential Cost Growth—The Disappearance of
Reused Code 159

Figure D-3 Comparison of Product Components—Uncovering Poor
Design Practices 160

Figure D-4 Detecting Weak Designs—The Absence of Information Hiding 161

Figure D-5 Project Tracking—The Deviations May Seem Manageable 162

vi CMU/SEI-92-TR-20

Figure D-6 Project Tracking—Deviations from Original Plan Indicate
Serious Problems 163

Figure D-7 Project Tracking—Comparisons of Developer's Plans Can
Give Early Warnings of Problems 163

Figure D-8 Indications of Deferred Development and Disappearing Reuse 164

Figure D-9 Indications of Design Turbulence 165

Figure D-10 Densities of Defects Discovered Before Products Were
Released 166

Figure D-11 Defect Densities for Firmware 167

CMU/SEI-92-TR-20 vii

Preface

In 1989, the Software Engineering Institute (SEI) began an effort to promote the use of
measurement in the engineering, management, and acquisition of software systems. We
believed that this was something that required participation from many members of the
software community to be successful. As part of the effort, a steering committee was formed
to provide technical guidance and to increase public awareness of the benefits of process
and product measurements. Based on advice from the steering committee, two working
groups were formed: one for software acquisition metrics and the other for software metrics
definition. The first of these working groups was asked to identify a basic set of measures for
use by government agencies that acquire software through contracted development efforts.
The second was asked to construct measurement definitions and guidelines for organizations
that produce or support software systems, and to give specific attention to measures of size,
quality, effort, and schedule.

Since 1989, more than sixty representatives from industry, academia, and government have
participated in SEI working group activities, and three resident affiliates have joined the
Measurement Project staff. The Defense Advanced Research Projects Agency (DARPA)
has also supported this work by making it a principal task under the Department of Defense
Software Action Plan (SWAP). The results of these various efforts are presented here and in
the following SEI reports:

• Software Effort & Schedule Measurement: A Framework for Counting Staff-Hours and
Reporting Schedule Information (CMU/SEI-92-TR-21)

• Software Quality Measurement: A Framework for Counting Problems and Defects
(CMU/SEI-92-TR-22)

• Software Measures and the Capability Maturity Model (CMU/SEI-92-TR-25)

• Software Measurement Concepts for Acquisition Program Managers
(CMU/SEI-92-TR-11)

• A Concept Study for a National Software Engineering Database (CMU/SEI-92-TR-23)

• Software Measurement for DoD Systems: Recommendations for Initial Core
Measures (CMU/SEI-92-TR-19)

This report and the methods in it are outgrowths of work initiated by the Size Subgroup of the
Software Metrics Definition Working Group. Like the reports listed above, this one contains
guidelines and advice from software professionals. It is not a standard, and it should not be
viewed as such. Nevertheless, the framework and methods it presents give a solid basis for
constructing and communicating clear definitions for two important measures that can help
us plan, manage, and improve our software projects and processes.

We hope that the materials we have assembled will give you a solid foundation for making
your size measures repeatable, internally consistent, and clearly understood by others. We
also hope that some of you will take the ideas illustrated in this report and apply them to

CMU/SEI-92-TR-20 Ix

other measures, for no single set of measures can ever encompass all that we need to know
about software products and processes.

Our plans at the SEI are to continue our work in software process measurement. If, as you
use this report, you discover ways to improve its contents, please let us know. We are
especially interested in lessons learned from operational use that will help us improve the
advice we offer to others. With sufficient feedback, we may be able to refine our work or
publish additional useful materials on software size measurement.

Our point of contact for comments is

Lori Race
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

CMU/SEI-92-TR-20

Acknowledgments

The SEI measurement efforts depend on the participation of many people. We would like to
thank the members of the Size Subgroup of the Software Metrics Definition Working Group
who contributed to the preparation of this report. The SEI is indebted to them and to the
organizations who sponsored their efforts to improve the measurement of software size.
Without the contributions of these professionals, we could not have completed this task:

Jeffrey Aune Charles Koch
Paramax Naval Air Development Center

Charles Cox Walter Lamia
Naval Weapons Center Software Engineering Institute

Paul Funch Shari Lawrence Pfleeger
The MITRE Corporation The MITRE Corporation

John Gaffney Stan Rifkin
Software Productivity Consortium Master Systems, Inc.

Nancy Jensen David Seaver
Rockwell International Project Engineering, Inc.

Raymond Kile Edward Tilford, Sr.
Hughes Aircraft Company Paramax

A first draft of this report was presented and distributed for review at the SEI Affiliates
Symposium in August 1991. A second draft was distributed to approximately 400 reviewers
in June 1992. More than 200 comments and suggestions for improvement were returned.
All have received careful consideration, and most have been either incorporated or
addressed through the development of new materials. We are indebted to those who took
the time and care to provide so many constructive recommendations:

Julia Allen Lyle Cocking
Software Engineering Institute General Dynamics

Jim Bartlett Thomas Donovan
Allstate Insurance Company Defense Logistics Agency

Barry Boehm Dean Dubofsky
Defense Advanced Research The MITRE Corporation

Projects Agency Betty Falato

John Bolland Federal Aviation Administration
ITT Avionics

CMU/SEI-92-TR-20 xi

M. Hosein Fallah
AT&T Bell Laboratories

Karen Powell
McDonnell Douglas

Liz Flanagan
AT&T Bell Laboratories

Donald Reifer
Reifer Consultants, Inc.

Harvey Hallman
Software Engineering Institute

Paul Rook
S.E.P.M.

James Hart
Software Engineering Institute

William Rooney
AIL Systems Inc.

George Huyler
Productivity Management Group, Inc.

John Salasin
Software Engineering Inst

Chris Kemerer
Massachusetts Institute of Technology

Hal Schwartz
Fujitsu Systems of Americ

Gary Kennedy
IBM Corporation

Brian Sharpe
Hewlett-Packard

Harry Larson
Larbridge Enterprises

Marie Silverthorn
Texas Instruments

Donna Lindskog
University of Regina and SaskTel

Al Snow
AT&T Bell Laboratories

Marc Meltzer
Pratt & Whitney

S. Jack Sterling
Logicon Eagle Technology

Everald Mills
Seattle University

Irene Stone
AIL Systems, Inc.

Kerux-David Lee Neal
Northrop Corporation

Terry Wilcox
DPRO-General Dynamics

xii CMU/SEI-92-TR-20

We also thank the members of the Measurement Steering Committee for their many
thoughtful contributions. The insight and advice they have provided have been invaluable.
This committee consists of senior representatives from industry, government, and academia
who have earned solid national and international reputations for their contributions to
measurement and software management:

William Agresti
The MITRE Corporation

Henry Block
University of Pittsburgh

David Card
Computer Sciences Corporation

Andrew Chruscicki
USAF Rome Laboratory

Samuel Conte
Purdue University

Bill Curtis
Software Engineering Institute

Joseph Dean
Tecolote Research

Stewart Fenick
US Army Communications-Electronics
Command

Charles Fuller
Air Force Materiel Command

Robert Grady
Hewlett-Packard

John Harding
Bull HN Information Systems, Inc.

Frank McGarry
NASA (Goddard Space Flight Center)

John McGarry
Naval Underwater Systems Center

Watts Humphrey
Software Engineering Institute

Richard Mitchell
Naval Air Development Center

John Musa
AT&T Bell Laboratories

Alfred Peschel
TRW

Marshall Potter
Department of the Navy

Samuel Redwine
Software Productivity Consortium

Kyle Rone
IBM Corporation

Norman Schneidewind
Naval Postgraduate School

Herman Schultz
The MITRE Corporation

Seward (Ed) Smith
IBM Corporation

Robert Sulgrove
NCR Corporation

Ray Wolverton
Hughes Aircraft

CMU/SEI-92-TR-20 xiii

As we prepared this report, we were aided in our activities by the able and professional
support staff of the SEI. Special thanks are owed to Mary Beth Chrissis and Suzanne
Couturiaux, who were instrumental in getting our early drafts ready for external review; to
Linda Pesante and Mary Zoys, whose editorial assistance helped guide us to a final,
publishable form; to Marcia Theoret and Lori Race, who coordinated our meeting activities
and provided outstanding secretarial services; and to Helen Joyce and her assistants, who
so competently assured that meeting rooms, lodgings, and refreshments were there when we
needed them.

And finally, we could not have assembled this report without the active participation and
contributions from the other members of the SEI Software Process Measurement Project and
the SWAP team who helped us shape these materials into forms that could be used by both
industry and government practitioners:

Anita Carleton
Software Engineering Institute

John Baumert
Computer Sciences Corporation

Mary Busby
IBM Corporation

Elizabeth Bailey
Institute for Defense Analyses

Andrew Chruscicki
USAF Rome Laboratory

Judith Clapp
The MITRE Corporation

William Florae
Software Engineering Institute

Wolfhart Goethert
Software Engineering Institute

Donald McAndrews
Software Engineering Institute

Shari Lawrence Pfleeger
The MITRE Corporation

Lori Race
Software Engineering Institute

James Rozum
Software Engineering Institute

Timothy Shimeall
Naval Postgraduate School

Patricia Van Verth
Canisius College

xiv CMU/SEI-92-TR-20

Software Size Measurement: A Framework for
Counting Source Statements

Abstract. This report presents guidelines for defining, recording, and reporting
two frequently used measures of software size—physical source lines and logical
source statements. We propose a general framework for constructing size
definitions and use it to derive operational methods for reducing misunderstand-
ings in measurement results. We show how the methods can be applied to
address the information needs of different users while maintaining a common
definition of software size.

1. Introduction

1.1. Scope

Size measures have direct application to the planning, tracking, and estimating of software
projects. They are used also to compute productivities, to normalize quality indicators, and to
derive measures for memory utilization and test coverage.

This report presents methods for reducing misunderstandings and inconsistencies when
recording and reporting measures of software size. In it we provide the following:

• A framework for constructing and communicating definitions of size.

• A checklist for defining and describing the coverage of two frequently used
measures—source lines of code (SLOC) and logical source statements.

• Example definitions for counts of physical source lines and logical source statements.

• Checklists for requesting and specifying additional data elements useful for project
planning and tracking.

• Forms for recording and reporting measurement results.

• Examples of uses and interpretations of software size measures.

• Recommendations for implementation.

This report does not address measures of difficulty, complexity, or other product and
environmental characteristics that we often use when interpreting measures of software size.
These measures are themselves important subjects for definition. Each deserves to be
defined with the thoroughness we try to apply here to measures of size. If our methods
become viewed as useful, we hope that they will inspire future work aimed at developing
procedures for describing and communicating explicit definitions for these and other
important software characteristics.

CMU/SEI-92-TR-20

1.2. Objective and Audience

Our objective is to provide operational methods that will help organizations obtain clear and
consistent reports of software size. Managers, developers, maintainers, estimators, and
process improvement teams should all find our methods helpful in getting the data they need
to plan, control, and improve the processes they use.

The goal of our methods is to reduce ambiguities and misunderstandings in reported
measures of size. Our motivation is that we see far too many reports of size that convey little
useful information. Moreover, reported values for software size are often confusing and
easily misinterpreted. This usually happens because neither the conveyors nor the receivers
of the information know what the measurements include or whether the measures have been
applied with any consistency. This confusion becomes compounded when those making the
report do not themselves know what actions were taken to collect the measurements they
cite. As a consequence, reports like "Our software activity produced 163,000 source code
instructions on that job" can easily be misunderstood by a factor of three or more.
Ambiguous reports like these place activities like project estimating, project management,
and process improvement on shaky foundations.

To remove these ambiguities, we have developed a framework that helps us describe
software size measurements in ways that are both complete and explicitly communicated.
We have applied this framework to construct examples of specifications for collecting and
reporting two measures of source code size—physical lines and logical source statements

Good definitions and good specifications require attention to detail. When you first use the
methods in this report to construct definitions, the number of issues you will address may
seem formidable. But decisions on most of these issues need be made only once—
thereafter they become organizational standards. The full details provided by the methods in
the report will then become especially valuable to the tool builders and corporate metrics
specialists who are charged with placing your organization's software measurements on a
sound foundation.

1.3. Relationship to Other Work

The benefits of software measurements are recognized more widely today than ever before.
Several recent publications illustrate the kinds of quantitative indicators that organizations
could be using to plan, control, and improve their software processes. We provide examples
of some of these indicators in Appendix D, and others can be found in the MITRE metrics
[Schultz 88], the proposed Army STEP metrics [Betz 92], the Air Force management
indicators [USAF 92], and in publications like [Baumert 92], [Grady 87], [McGhan 91],
[McGhan 92], and [Rozum 92].

While these publications show many graphs that we can use to help plan and track software
products and processes, few define the underlying measures on which their indicators are

CMU/SEI-92-TR-20

based. Without this information, it is easy for incorrect conclusions to be drawn and
inappropriate decisions to be made.

This report provides a framework for defining some of the fundamental size measures used
in software indicators. It also provides methods for ensuring that rules of measurement
remain consistent, so that reports made tomorrow can be related to those made today. You
can use these methods also to achieve common definitions across projects and across
organizations, so that long term trends can be tracked and lessons learned from one project
or organization can be extrapolated to another.

1.4. Endorsement of Specific Measures

Nothing in this report should be interpreted as implying that we believe one size measure is
more useful or more informative than another. To the best of our knowledge, no one has yet
used the kind of measurement definitions that would permit conclusions of this sort to be
validated. Tools like the checklists and forms in this report should help all of us begin to
assemble the information that will let us determine which size measures are the most
effective for the different processes we use in developing and supporting software systems.

In the meantime, we do believe that we can sometimes judge which measures will be easiest
to implement and which will be easiest to automate. Where we have elected to pursue one
measure rather than another, these judgments have played major roles. The fact that we
choose or recommend a particular path in this report means only that we judge it to be the
best course to take today to get immediately usable results.

CMU/SEI-92-TR-20

2. A Framework for Size Definition

The measurement framework we propose in this report makes extensive use of checklists.
These checklists provide operational methods for constructing and communicating clearly
understood definitions of software size measures (our primary objective). They also permit
us to satisfy the data needs of different users while maintaining consistent definitions of size.
This lets us expand and tailor our measurement data sets as our process maturities increase,
without having to change our underlying definitions or measurement practices.

Before defining any measure, we should always ask "Why do we want the information we
propose to collect, and how will we use it?" The answers to these questions become our
measurement objectives, and each objective will have its own coverage requirements and
information needs. Checklists like those in this report give us a means for addressing and
defining the rules that we follow to meet these needs.

In developing our framework and checklists, we have been guided by two principal criteria:

• Communication: If someone uses our methods to define a measure or describe a
measurement result, will others know precisely what has been measured and what
has been included and excluded?

* Repeatability: Would someone else be able to repeat the measurement and get
the same result?

The framework we use consists of the following steps, which we apply to each prospective
size measure:

1. Identify the principal attributes that characterize the objects we want to measure.

2. Identify the values of each attribute that different users of the measure may want to
either include in or exclude from their measurement results. Ensure that these
values are mutually exclusive.

3. Prepare a checklist of principal attributes and their values, so that values included
in and excluded from measures can be explicitly identified.

4. Ensure that we understand why coverage or visibility of each attribute value may
be important to one or more users of measurement results.

5. For each attribute, identify the values we will include in the measure, together with
those we will exclude. Record the inclusions and exclusions on the checklist.

6. Identify and record all additional rules and exceptions that we follow when
collecting and recording measurement results. Use the results of this step, in
conjunction with those of step 5, as the definition for size.

7. Identify and record the values (or sets of values) for which individual measure-
ments will be collected and recorded. Use the results of this step as data
specifications.

8. Make and record measurements according to the definition and data
specifications.

CMU7SEI-92-TR-20 5

9. Aggregate the measurement results and prepare summary reports.

10. Attach the measurement definition and data specifications to each set of
measurement records and reports.

These criteria and steps have led us to four kinds of instruments for defining, recording, and
reporting software size measurements—definition checklists, supplemental rules forms, data
recording forms, and reporting forms. The definition checklists, in turn, have at least three
uses. We use them to define our overall measure for size, to create specifications for
recording additional data elements (data specifications), and to convey user requests for
specialized reports (data requests). Figure 2-1 illustrates the overall scheme. We describe
the forms we use in Chapters 3 through 9 and present reproducible copies in Appendix E.

Definition
checklist
 • •
 •
 •
 • •
 •

tsssssssssgsssasagsaaj

Supplemental
rules form

xx

xx

%£

"':':"«'"'',M"'''"'':":|

lUIIIUIIIUUHHUIUHII
Data spec A:

•

•
•'*L«atM$««4ii«J««aa»i

Data spec B:
\ • •

•

Data spec C:

•
•
• •

•
"*

Recording
form A

Recording
form B

Recording
form C

• •
• a

/

database of
measurement results

.':.: •::-.W-|.|IM.|.M-l-l-H.!-:.!L

Product size
summary

Figure 2-1 Size Definition Framework—A Partial View

CMU/SEI-92-TR-20

2.1. Definition Checklists

The methods we propose for constructing size definitions start with a checklist. The checklist
identifies the principal attributes of our target size measure. Principal attributes are
characteristics important to the different people who will use the measurement results.
Examples of attributes of familiar objects include properties such as length, weight, height,
volume, density, color, source language, location, origin, destination, function performed,
author, and status. For each attribute of our target measure, we identify the values that the
attribute can take on. In each case, these values should be both exhaustive (complete) and
mutually exclusive (nonoverlapping).

After listing principal attributes and their values and arranging them into a checklist, the
process for constructing a definition becomes relatively straightforward. We simply check off
the attribute values we will include in our definition and exclude all others. We also design
and use supporting forms to record special rules and clarifications that are not amenable to
checklist treatment.

The checklist has other uses as well. The format we use permits us to designate the data
elements associated with the definition that we want to have measured and recorded when
measurements are made. This lets us convey our needs to those who make the
measurements and those who set up and maintain the databases in which measurement
results are stored. The checklist can also be used to request and specify the data arrays and
marginal (individual) totals that we would like to have reported to us.

In practice, a checklist turns out to be a very flexible tool. For example, an organization may
want to merge results from several values into a new value. Moreover, some measures exist
(counts of source code comments, for example) that some organizations may want to record
and aggregate but not include in a total size measure. All these options can be addressed
with the checklist.

With this in mind, we have found it useful to provide blank lines in checklists so that
organizations can add other attribute values to meet local needs. When you exercise this
flexibility to list additional values for inclusion or exclusion, you should take care to rephrase
the labels for existing values so that overlaps do not occur.

The importance of ensuring that values within attributes are nonoverlapping cannot be
overstated. If values are not mutually exclusive, observed results can get assigned to more
than one category. If this happens, and if totals (such as total size) are computed by adding
across all values within an attribute that are designated for inclusion, double counting can
occur. Reported results will then be larger than they really are. In the same vein, if overlaps
exist between two values and if one of the values is included within a definition while the
other is not, those who collect the data will not know what to do with observations that fall
into both classes.

CMU/SEI-92-TR-20

Definition Checklist for Source Statement Counts

Definition name: Physical Source Lines of Code
 (basic definition)

Date: 8/7/92
Originator: SEI

Measurement unit: Physical source lines
Logical source statements

•_

Statement type Definition [•J Data array Includes Excludes

classify it as the type with the highest precedence.
1 Executable Order of precedence->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1 •
&S$:::::$:'::::$

2 •
3 •

4 •
5 •
6 •
7 •
8 •

How produced Definition I • I Data array Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
^ Modified

6 Removed
7
8

•
•
•
•
•

•

Origin Definition !• I Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

•
•
•
•

•
•

•
•
•
•

Usage Definition [• | Data array
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes
•

•
3

Figure 2-2 Example of One Page of a Completed Checklist

8 CMU/SEI-92-TR-20

Figure 2-2 is an example of how the first page of a completed checklist might look for one
particular definition of software size. Bold-faced section headings highlight the attributes,
and these headings are followed by the lists of values that the attributes take on. For
example, Statement type is an attribute, and the values for this attribute are executable
statements, declarations, compiler directives, comments, and blank lines. All except the first
have been grouped under a generic class called nonexecutable, for which some
organizations may want aggregated accountings. Chapter 3 presents the full checklist, and
Chapter 4 discusses the attributes and their values.

Checklists like the one in Figure 2-2 help provide a structured approach for dealing with the
details that must be resolved to reduce misunderstandings when collecting and
communicating measures of software size. With such checklists, issues can be stepped
through and addressed one at a time by designating the elements that people want included
in measurement results. At the same time, designating the elements to be excluded directs
attention to actions that must be taken to avoid contaminating measurement results with
unwanted elements.

In Chapter 5, we will present examples of two definitions that we have constructed with this
checklist. Although these examples represent consensus views, readers should keep in
mind that there are no universal "best" choices when completing a definition checklist.
Instead, each choice should be made so as to serve an organization's overall measurement
needs. This almost always involves tradeoffs between the benefits to be gained (based on
how the measurement results will be used) and the difficulties associated with applying the
definition to collect data from real software projects.

2.2. Supplemental Rules Forms

Sometimes definition checklists cannot explain all the rules and practices that must be made
explicit to avoid ambiguities and misunderstandings. In these instances, we recommend
constructing specialized forms to spell out the additional rules. There are three instances
where we have found this necessary:

• When defining rules for distinguishing among different statement types while counting
physical source lines.

• When defining the delimiters and rules used to identify beginnings and endings of
different kinds of logical source statements.

• When describing procedures used to find and identify dead code, so that only
operative software is included in system size.

Chapter 7 (Figures 7-1, 7-2, and 7-3) presents the forms we have created for describing
these practices.

When completed checklists cannot provide full disclosure of all measurement rules, they
should be accompanied by supplemental rules forms. All entries on the supplemental forms
should be either filled in or marked as not applicable, so that no loose ends are left hanging.

CMU/SEI-92-TR-20

The combination of a completed checklist and its supplemental rules forms becomes a
vehicle for communicating the meaning of measurement results to others. The checklist and
supplemental forms can be used for this purpose whether or not definitions have been
agreed to in advance. They can also be used at the start of a project to negotiate and
establish standards for collecting and reporting measures of software size. The benefits
become even greater when the standards are applied uniformly across multiple projects and
organizations.

2.3. Recording and Reporting Forms

Although checklists and rules forms are useful for recording and communicating definitions,
they neither record nor communicate results. For definitions to work, they must be supported
by forms that people can use to collect and transmit results of quantitative observations.
There are two steps in this process—recording and reporting. Our framework distinguishes
between these steps and provides forms for each.

Recording forms. The purpose of recording forms is to transport data from those who make
measurements to those who enter the results into databases. These are low-level forms,
designed for measuring relatively small and homogeneous units. Recording forms should be
consistent with the data elements designated for measurement, and they should capture all
information needed to track the data back both to the definition and to the entity measured.
They should also include provisions for noting the time and stage within the life cycle or
process where the measurements are made. Chapter 8 presents examples of forms we
have constructed for recording counts of physical and logical source statements.

Reporting forms. The purpose of reporting forms is to aggregate and summarize data for
those who use measurement results. Our ability to do this effectively in a multidimensional
world is constrained severely by the two-dimensional nature of most presentation media. We
will present an example of a summary report and a process for specifically addressing the
data needs of individual users in Chapter 9.

Figure 2-3 illustrates the relationships among the various forms when several languages are
present. Here, a definition checklist for logical source statements is supported by rules forms
that explain the exact practices employed when identifying statements in different
programming languages. These forms are supported in turn by recording forms for collecting
data and reporting forms for summarizing measurement results. Separate copies of the
recording forms are used for each software entity measured. Thus, several (or even many)
recording forms may be completed within a given project.

10 CMU/SEI-92-TR-20

Rules form
for Ada
source

statements

Summary
report

for Ada
source

statements

Checklist
for logical

source
statements

Project's
Ada code

Rules form
for assembly

source
statements

1
Summary
report for
assembly

source
statements

N
±_^_L

yAW"«*rf..

Recording
forms

Project's
Assembly code

Rules form
for C++
source

statements

i
Summary

report
for C++
source

statements

Summary
report

for C++
module A

statements

mmkmm
Summary

report
for C++

module B
statements

C++
Module A

C++
Module B

Figure 2-3 Application of Definition, Recording, and Reporting Forms to a Project

CMU/SE1-92-TR-20 11

3. A Checklist for Defining Source Statement Counts

In this chapter we present a checklist for defining two measures of source code size—
physical source lines and logical source statements. Counts of physical lines describe size in
terms of the physical length of the code as it appears when printed for people to read.
Counts of logical statements, on the other hand, attempt to characterize size in terms of the
number of software instructions, irrespective of their relationship to the physical formats in
which they appear.

Some common acronyms for physical source lines are LOC, SLOC, KLOC, KSLOC, and
DSLOC, where SLOC stands for source lines of code, K (kilo) indicates that the scale is in
thousands, and D says that only delivered source lines are included in the measure.
Common abbreviations for logical source statements include LSS, DSI, and KDSI, where DSI
stands for delivered source instructions.

In addressing these two measures of software size, we have drawn extensively from the draft
Standard for Software Productivity Metrics prepared by the P1045 Working Group of the
IEEE [IEEE 92]. This draft standard provides many terms and definitions that are useful in
arriving at mutually understood measures of software productivity. We were fortunate to
have the evolving standard available to us during our work.

However, perhaps because the IEEE work is directed more toward derived measures
(productivity = outputs divided by inputs) than toward size itself, it sometimes stops short of
the detailed issues that must be settled if ambiguities in source code counts are to be
avoided. Size measures can be used for more than just productivity computations. For
example, counts of physical and logical statements can be very useful for cost estimating, for
tracking the progress of projects with respect to plans, for monitoring the development of
reuse libraries, and for evaluating the effectiveness of reuse strategies. They can also be
practical bases for normalizing other software measures, such as those used to describe
quality (defect densities) and product improvement efforts (rates of error discovery and
efficiency of peer reviews).

Thus, there are reasons to probe more deeply than the P1045 Working Group has probed.
The checklist we have developed provides a structured method for extending and refining the
size definition efforts initiated by the IEEE. For the most part, it is consistent with their work.
To help maintain this consistency, we have used the term source statements to refer to both
physical source lines and logical source statements.

3.1. Describing Statement Counts

Logical statements and physical lines of code are characterized by their attributes. In fact, it
is only through the values of attributes that size measures have any definition or meaning.
Historically, the primary problem with measures of source code size has not been in coming
up with numbers—anyone can do that. Rather, it has been in identifying and communicating

CMU/SEI-92-TR-20 13

the attributes that describe exactly what those numbers represent. If we do not identify and
describe the attributes of size, we cannot guarantee the consistency needed to make size
measurements useful.

The checklist is primarily a tool for identifying and addressing attributes. Figure 3-2 shows
the one we have created for defining source statement counts. This checklist may, at first
glance, seem complicated. Initial reactions are often of the sort: "Good grief! Do I really
have to wrestle with all that detail?" We can only observe that if you do not, others can (and
often will) do anything they want with respect to issues left unaddressed. The consequence
is that the value of collected data is diminished and its meaning becomes corrupted.
Unfortunately, this is too often characteristic of software size measurement today.

The definition checklist in Figure 3-2 gives a mechanism for communicating exactly what has
been included in—and what has been excluded from—counts of source code size. It can be
used to record the rules used for counting either source lines of code (a physical measure) or
logical source statements (instructions). It can be used also to construct and communicate
requests and specifications for collecting and recording counts of individual data elements.
Since attributes take on values independent of each other, data on these individual elements
will usually be collected in arrays. Figure 3-1 is an example of an array that reports
statement counts for individual data elements.

programmed

copied

modified

total

•D T3
T3 CD CD
CD Crt CO

"O CD i—

o o
O)

~ CD

3

W

« ~% CD CD

I E
<n o
>» o w

CO
•*—I o

20,224 33,731 16,432 0 70,387

5,108 10,883 18,631 0 34,622

3,006 4,865 5,194 0 13,065

28,338 49,479 40,257 0 118,074

Figure 3-1 A Data Array for Project Tracking

In Chapter 5, we will use the Definition and Data array boxes of the checklist to construct
some specific examples of definitions and data array specifications. In the meantime, users
can put the checklist to immediate use by using it to describe their current measures of
software size. For this purpose, you should check the Definition boxes if you are not using
the checklist to describe arrayed data.

14 CMU/SEI-92-TR-20

Since the first purpose of the checklist is to describe measures that have already been made,
it can be used with very little explanation by any organization that has been collecting and
reporting counts of either physical source lines or logical source statements. The focus here
is on communication. Users need only check off each element on the checklist to indicate
whether or not it is included in or excluded from their measurement results. The completed
checklist can then be attached to the reported results, so that users of the results will know
what the numerical values represent. The same process can be used also to describe the
software sizes used for estimating project costs and for project planning and scheduling.

The checklist in Figure 3-2 uses nine attributes to describe and bound the kinds of software
statements included in a measure of source code size. The attributes are: Statement type,
How produced, Origin, Usage, Delivery, Functionality, Replications, Development
status, and Language. These attributes are orthogonal, or nearly so, in the sense that
each takes on values more or less independently of the others. Values within an attribute do
not overlap, and each represents a class of statements that is of interest to one or more of
the software or management communities that use the results of size measurement. When
reporting a result or creating a definition, users have only to check the attribute values they
include and those they exclude when measuring and reporting counts of source statements.

When using the checklist, you are always free to collect the underlying data at any level of
granularity you wish. The checklist is merely a vehicle for reporting the rules applied when
assembling the data for others to use.

CMU7SEI-92-TR-20 15

Definition Checklist for Source Statement Counts

Definition name: Date:
Originator:

Measurement unit: Physical source lines
Logical source statements

Statement type Definition Data array
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

Includes Excludes

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1

2
3

4
5
6
7
8

How produced Definition Data array Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Origin Definition Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse;
12 Other software component or library
13
14

Includes Excludes

Usage Definition Data array
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes

3

Figure 3-2 Definition Checklist for Source Statement Counts

16 CMU/SEI-92-TR-20

Definition name:

Delivery Definition Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

Functionality Definition Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes

vWiSM-:'X. '[.

Replications Definition Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes

Development status Definition Data array
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

Language Definition Data array
List each source language on a separate line.

1

Includes Excludes
,;:; : ::

2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 3-2 Definition Checklist for Source Statement Counts, Page 2

CMU/SEI-92-TR-20 17

Definition name:
Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin...end and {...} pairs used as executable statements
5 Begin...end and {...} pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

C and C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a "for" statement
4 Block statements (e.g., {...} with no terminating semicolon)
5 "f i Y> or "};" on a line by itself when part of a declaration
6 "f or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

Figure 3-2 Definition Checklist for Source Statement Counts, Page 3

18 CMU/SEI-92-TR-20

Definition name:
Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type ->
2
3
4
5
6
7
8
9

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

Figure 3-2 Definition Checklist for Source Statement Counts, Page 4

CMU/SEI-92-TR-20 19

Definition name:
Includes Excludes

1
2
3
4
5
6
7
8
9

10
11
12

Listed elements are assigned to
statement type ->

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

Figure 3-2 Definition Checklist for Source Statement Counts, Page 5

20 CMU/SEI-92-TR-20

3.2. Modifying the Checklist to Meet Special Needs

We have designed the checklist so that when source statements are counted, each
statement (or physical line) has exactly one value per attribute. For this to happen, values
within an attribute must be both mutually exclusive and collectively exhaustive.

When an organization finds situations where no attribute value exactly fits its measurement
needs, there is always a safety net. Users have only to define a new value that does fit their
needs and add it to the checklist. One caution: new values added to an attribute may overlap
one or more values that already exist. When this happens, users should make clear whether
the overlaps are to stand, so that a source statement can take on more than one value for
that attribute, or whether the new value is to be treated as a unique subclass of statements
that is to be removed from the class or classes of which it was previously a part. If the latter
choice is made, which is our recommendation, then the names for all affected values of the
attribute should be reworded to describe their new, reduced coverages more accurately.

3.3. Assigning Rules for Counting and Classifying Statement Types

When statement counts are made or when automated counters are designed, questions
often arise as to whether certain specific language constructs should be included in
statement counts. For example, should keywords like begin and end be counted when they
appear on lines by themselves? What about the analogous left and right braces used in C
and C++, or seemingly empty statements like nulls, continues, and no-ops?

In constructing our checklist, we found it useful to include sections that would help ensure
that some of these less obvious but potentially confusing details associated with classifying
and counting statement types get addressed. Opinions with respect to these issues have
been known to differ, with dramatic effects on measurement results. (In Chapter 6, we give
two examples where large differences of opinion easily occur.) One of the sections we have
included applies to many programming languages. This part, which we call Clarifications
(general), is shown at the top of page 3 of the checklist. It is followed by further sections that
address the special characteristics of some of the more common programming languages.
Chapters 4 and 5 include discussions and illustrations of the capabilities that these sections
provide.

CMU/SEI-92-TR-20 21

22 CMU/SEI-92-TR-20

4. Size Attributes and Values: Issues to Consider When
Creating Definitions

In this chapter, we define and illustrate the attributes and values used in the definition
checklist, and we discuss why the issues they seek to resolve are important. We also
provide guidelines and examples for interpreting and using the individual checklist elements.

Our discussions follow the order in which the topics appear in the checklist. The sequence
is:

Statement type

How produced

Origin

Usage

Delivery

Functionality

Replications

Development status

Language

Clarifications (general)

Clarifications for specific languages

There is a section for each attribute. Each section begins with the purpose of the attribute
and a picture of the portion of the checklist that the section addresses. Then, in checklist
order, we discuss the values that the attribute can take on. These discussions explain why
different values may be important to different users. They also point out some of the
implementation issues you may face when including the value or excluding it from your
definition or when collecting detailed measurement results.

Before using the checklist to construct definitions for counting source statements, you should
read this chapter thoroughly. Understanding the issues the attributes and values address is
essential to implementing useful and mutually understood measurement practices.

4.1. Statement Type

The statement type attribute classifies source statements and lines according to the principal
functions that they perform. The types in the checklist are those that have historically been
of interest to project managers, cost modelers, and cost estimators. There are five types:
executable statements, declarations, compiler directives, comments, and blank lines.
Comments, in turn, have four subtypes: comments on their own lines, comments on lines
with other code, banners and nonblank spacers, and blank comments.

CMU/SEI-92-TR-20 23

Statement type Definition Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1

2
3

4
5
6
7
8

Figure 4-1 The Statement Type Attribute

4.1.1. Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues,
nulls, no-ops, empty statements, and FORTRAN'S END. Or they may be structured or
compound statements, such as conditional statements, repetitive statements, or with
statements. Some languages (Ada, C, C++, and Pascal are examples) have block
statements (i.e., begin...endor {...} structures) that they define as executable statements
when used where other executable statements would be permitted. Expression-based
languages like C and C++ often define expressions to be executable statements when they
terminate with a semicolon. C++ even has a declaration statement that is executable.

When we count statements, we normally count all these examples as executable statements.
We have, however, included provisions in the checklist for you to take a different view.
These provisions will be discussed in Sections 4.10 and 4.11 under the topic of
Clarifications.

In general, executable statements express the operational logic of the program. One
characteristic of executable statements is that they can be stepped through with interactive
debuggers. Another characteristic is that debuggers can set break points with respect to
executable statements, so that computations can be halted to examine intermediate results.

4.1.2. Declarations

Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to do the following:

• Name, define, and initialize.

• Specify internal and external interfaces.

24 CMU/SEI-92-TR-20

• Assign ranges for bounds checking.

• Identify and bound modules and sections of code.

Examples include declarations of names, numbers, constants, objects, types, subtypes,
programs, subprograms, tasks, exceptions, packages, generics, macros, deferred constants,
and the interfaces to any of these software elements. Declarations also include renaming
declarations, use clauses, and declarations that instantiate generics. Mandatory begin...end
and {...} symbols that delimit bodies of programs or subprograms are not executable state-
ments. Rather, they are integral parts of program and subprogram declarations. Language
superstructure elements that establish boundaries for different sections of source code are
also declarations. Examples include terms such as PROCEDURE DIVISION, DATA
DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Some languages have separately compiled modules that can be
exclusively declarations. Ada's package specifications are examples, and Modula-2 has
similar features.

Declarations are never required by language specifications to initiate runtime actions,
although some languages permit compilers to implement them that way.

Both the operational and cost distinctions between declarations and executable statements
can be fuzzy at times. For example, variables are sometimes initialized statically as part of
data declarations and sometimes dynamically at run time. A case in point: Pascal requires
that data be initialized with executable statements, but other languages (FORTRAN, C, and
Ada, for example) permit equivalent operations to be done at load time through declarations.

There are other ways in which treatments of declarations and executable statements differ
across languages. Sometimes these treatments depend on the styles and choices of
compiler vendors. For example, when Ada code is compiled, all declarations get elaborated
[Ada 83], and elaborations can generate executable code [Ichbiah 86]. In fact, Ada requires
that the effects of elaborations must be the same as if they were performed in sequence at
run time, although decisions as to how these effects are to be achieved are left to the
discretion of individual compiler developers. Static compilation of declarations is permitted,
so long as the effects are indistinguishable from runtime elaborations. Therefore, classifying
an Ada code element as a declaration does not imply that it is not compiled into some
executable machine-level form.

Thus, in the larger perspective, some kinds of declarations may not be very different from
executable statements. An unambiguous definition that asks for declarations to be counted
separately from executable statements should include explicit resolution of these distinctions,
particularly if counts from different languages are to be compared or combined. The
clarifications sections on pages 3 through 5 of the checklist are there to help you identify
these distinctions and make rules explicit.

One reason for counting declarations separately is that many software professionals attribute
different costs to declarations than they do to executable statements. Some popular cost
models address this distinction. For example, Boehm's Ada COCOMO model uses a size

CMU/SEI-92-TR-20 25

measure that is the sum of the number of carriage returns in package specifications and the
number of semicolons in package bodies [Boehm 89]. PRICE S also treats data declarations
differently from executable statements [Park 88]. In both of these cases, separate counts (or
estimates) for declarations and executable statements are needed.

Other cost models treat declarations exactly as they treat executable statements, even to the
point of referring to them as executable. SLIM is an example [Putnam 91]. In these cases,
you can group declarations with executable statements and compiler directives to form a
single type for cost estimating purposes, and counting rules can be simplified.

4.1.3. Compiler directives

Compiler directives instruct compilers, preprocessors, or translators (but not runtime
systems) to perform special actions. Some, such as Ada's pragma and COBOL's COPY,
REPLACE, and USE, are integral parts of the source language. In other languages like C
and C++, special symbols like # are used along with standardized keywords to direct
preprocessor or compiler actions. Still other languages rely on nonstandardized methods
supplied by compiler vendors. In these cases, directives are often designated by special
symbols such as #, $, and {$}.

Compiler directives themselves are seldom standardized elements of source languages.
Rather, they are special features provided by compiler vendors. They can affect the logical
operation of the code. Turning code generation for range checking on or off is just one
example.

Compiler directives can also be used for:

• Inserting or expanding copies of other source code at compile time (macro
expansions, insertion of include files, and inlining of subroutines and functions are
examples).

• Selecting alternative forms of speed and memory optimization.

• Gaining or killing access to operating system features.

• Redefining terms and labels (C's #define, for example).

• Controlling the level of diagnostics.

• Defining an object configuration (for example, the size of memory).

Our definition for Compiler directives differs from the one in the IEEE draft Standard for
Software Productivity Metrics [IEEE 92]. The IEEE draft uses Compiler directive as a
catch-all for statements that fit under no other statement type. We have taken the more
specific view that compiler directives are statements that access compiler features that are
external to the functions performed by source code languages. If you are uncomfortable with
either view, you have two courses of action. You can (1) combine compiler directives with
declarations (or with executable statements for that matter) and not worry about the
distinctions, or (2) declare and define your own specialized statement types. If you follow

26 CMU/SEI-92-TR-20

either of these paths, you should record your modified definitions on the checklist. We have
provided blank lines at the bottom of the statement type block so that you can do this.

4.1.4. Comments

Comments are strings and lines of textual characters that have no effect on compiler or
program operations. Omitting or revising comments never changes a program's operations
or data structures.

Blank comments are physical lines or statements that have comment designators but contain
no other visible text or symbols. They are normally the logical equivalent of blank lines. For
this reason, most (but not all) people exclude them from counts of source code size.

Many organizations have programming standards that require comments to be placed at the
beginning of modules and procedures to report the purpose of the software and to record
revision histories. If your organization is interested in measuring and tracking the volume of
this work, you may want to create additional comment subtypes to distinguish header and
revision history comments from others. The definition checklist has extra spaces in the
statement type block for this purpose. Figure 5-14 in Section 5.3.7 shows an example of how
a data specification can be constructed for capturing this kind of information.

Comments can come in different forms that serve different purposes. The header and
revision history comments just mentioned are but two examples. Whenever you add new
classes to the checklist to identify and record special statement types, you should state the
explicit rules for identifying the types; otherwise, local interpretations and oversights are
almost guaranteed. The supplemental rules forms that we present in Chapter 7 provide a
place for recording these rules.

Obtaining counts for comments when counting logical source statements often presents a
dilemma that can try the faith of advocates of logical source statement measures. Resolving
the dilemma is important for consistent interpretation across different source languages. The
dilemma is this:

Counting comments may not be compatible with
counting logical source statements—there may be no
simple mechanism for identifying the bounds
(beginning and ending) of a logical comment.

For example, in some languages comments that span several lines can arbitrarily have one,
two, or many comment designators. Ada is a case in point—every comment starts with two
adjacent hyphens and extends only to the end of a line. Most assembly languages have
analogous mechanisms for separating comments from code. FORTRAN is similar in that
comments start with a C in column 1 and extend to the end of a line. In all these cases
comments come in short, physical chunks, and the concept of a logical comment statement

CMU/SEI-92-TR-20 27

does not exist. Those who attempt to count logical source statements may have to resort to
physical counts to get consistent measures for the volume of comments in their source code.

Pascal, Modula-2, C, and C++, on the other hand, provide more freedom, leading to a wider
range of commenting styles. In these languages, comments once started continue until
explicitly terminated by an end-of-comment designator. Some organizations enforce
standards that require comment terminators at the end of every line. In these cases,
counting issues are much as they are in Ada. Other organizations permit comments to
continue for several sentences and several lines, terminating only when the comment is
signaled to be complete. One comment in these cases may equal several in Ada or
FORTRAN. For languages that have commenting features like Pascal, Modula-2, C, or C++,
we recommend that summaries of local standards for commenting be attached to reported
size measures whenever "logical comments" are counted.

4.1.5. Blank lines

Blank lines are physical lines that have no visible textual symbols. They are rarely counted,
except perhaps for research studies of the effects of white space on readability, quality, and
maintainability.

4.1.6. Other statement types

Users who want to add other or more detailed statement types to the checklist may do so.
For example, some organizations count the frequencies of different programming constructs
(such as with and use clauses in Ada) to gain insights into programming styles or into
progress taking place with respect to learning and adopting new languages and the
corresponding effects this has on product designs. This kind of information can often be
obtained for little extra cost with commercially available program analyzers.

One word of caution: adding items to the list of statement types in the definition checklist can
cause the statement types to overlap. One procedure we recommend to avoid this is to add
the new items not to the definition checklist but only to a data specification checklist, and
then check the Data array box for the statement type attribute. That way overlaps will not
corrupt the basic definition of size. Alternatively, you can use the procedure described in
Section 5.3.7. Simply add the new items as subclasses of existing statement types and add
one or more "other" subclasses so as to complete a mutually exclusive and exhaustive
partitioning of the original types. A third option is to add the new items as special classes
under the Clarifications on pages 3 through 5 of the definition checklist, and then use these
classes to construct data specifications.

4.1.7. Order of precedence

Some languages permit more than one statement type to appear on a physical line. For
these languages, a counting process that classifies statements according to type must have

28 CMU/SEI-92-TR-20

explicit rules for breaking ties. The checklist has small boxes just to the right of the
statement types for this purpose. The boxes show the order of precedence that we would
use to assign source lines to types when more than one statement type applies. For
example, if a comment (precedence level 5) appears on a line with a declaration (precedence
level 2), we would classify the line as a declaration. Similarly, lines that contain both
declarations and executable statements would be classified as executable statements.
Users who wish to use a different precedence order may revise the one in the checklist to
meet their needs, so long as they record their changes and make them public.

4.1.8. General guidance

Whenever statement types other than blank lines are counted separately or excluded from
counts, the rules for counting become dependent on the programming language in which the
source code is written. This has direct implications for the construction of automated line and
statement counters. When counting rules differ for each source language, either different
counters must be prepared or the counters must be designed so that they can parse multiple
languages.

Moreover, when counting rules are different for different languages, anyone comparing or
combining counts of source statements from different languages must be careful to state
their counting rules in ways that make the comparisons or combinations reasonable.
Alternatively, they must develop supporting models that account for language differences. In
either case, the criteria for comparing or combining counts will depend on the purposes for
which the measurements are made. For example, decisions designed to make languages
comparable for cost estimators, who prefer counts proportional to effort expended, will be
different from those designed to make languages comparable for configuration managers,
who prefer measures proportional to physical storage.

Because views on issues like these can legitimately vary, we have included a structure in the
checklist for making visible the rules associated with different views. This structure is
presented in the Clarifications section that begins at the top of page 3 of the checklist and
continues on pages 4 and 5. We will discuss this in more detail in Sections 4.10 and 4.11.

4.2. How Produced

This attribute identifies the process used to produce individual statements and lines.
Classification by production process helps us estimate costs and avoid misleading interpreta-
tions when applying size measurements to describe productivity or track progress.

Automated tools that count source lines or statements may not be able to distinguish among
lines or statements that are programmed, generated, converted, or copied. Identification of
these classes will usually have to be done manually, so that the code can be fed to
automated counters in segregated chunks.

CMU/SEI-92-TR-20 29

How produced Definition Data array
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Includes Excludes

Figure 4-2 The How Produced Attribute

4.2.1. Programmed

This class includes all statements prepared by programmers that are not modifications of
pre-existing statements. It includes statements that are added when modifying or adapting
other bodies of code.

Most people would continue to view programmed statements as programmed after they are
processed by automated formatters or pretty printers. In fact, processing source code with
formatters and pretty printers is an effective way to simplify and standardize counting rules so
as to obtain consistent measurement results.

The use of automated translators can introduce gray areas. But when input code is classified
as programmed, output from translators is usually classified as programmed code also, not
as generated code. Decisions as to whether to use the input to or the output from translators
as the basis for counting will depend on the form in which code is delivered to the customer
or the form in which the code will be maintained.

4.2.2. Generated with source code generators

Generated source statements are those created by using tools to produce compilable
statements automatically from other forms of problem statement or solution description.
Examples of source code generators include form generators that translate screen layouts
into source code and fourth-generation language translators that produce code in compilable
third-generation languages.

Decisions about treating inputs or outputs of source code generators as the source code to
be measured often depend on the form in which the code will be maintained.

4.2.3. Converted with automated translators

Converted statements are pre-existing statements that are translated automatically or with
minor human intervention so that they run on different or newer computers or are expressed
in different languages.

30 CMU/SEI-92-TR-20

There are at least three reasons for counting converted statements separately:

• Converted software usually involves less labor and has lower production costs than
programmed or modified code. Sometimes, however, attempts to convert and use
existing software can be more expensive than developing new code from scratch.
Cost estimators and project trackers will almost always want to address conversions
separately from other production classes to avoid erroneous interpretations of
productivity an*d progress.

• Conversion is a form of reuse. Many organizations would like to include counts of
converted statements when they compute reuse ratios.

• Converted software has usually had operational use in one or more products prior to
being converted. In most cases, the logic associated with the statements has at least
been thoroughly tested. As a consequence, converted statements often contain
fewer defects than software produced by other means (copying excluded). When you
use size measures to compute normalized quality measures such as defect densities,
you will normally want to account for the prior testing by tracking your converted code
separately.

Since conversions involve bodies of code, not single statements, all code processed into final
form by means of conversion (as opposed to copying, modifying, or reprogramming) should
be reported in this category, even if some of the statements are unchanged.

4.2.4. Copied or reused without change

Copied lines and statements are those taken verbatim from other sources and used as part
of the master source code for the new product. This category applies to copies of pre-
existing (reused) statements only—copies of master source statements used within the new
product are identified and accounted for under the Replications attribute as "copies of
master statements physically repeated in the master code."

Since "copied" refers to statements, not modules, the term does not conflict with "removed"
or "modified." If some statements are removed or others are modified, only the remaining
unchanged statements are classified as copied. Removed and modified statements are
recorded in their own categories.

Moreover, since "copied" refers to statements, not modules, other statements can be inserted
before or after individual copied statements, without changing the classes of any of the
statements. This implies that copied statements can also be relocated with respect to other
statements in a module, without changing their class.

All statements copied from other, already counted statements in the final product are
accounted for under the Replications attribute.

Size measures for copied software are important for constructing reuse measures and for
estimating integration and testing costs. Furthermore, copied and reused code that is
delivered in source form must be maintained. This means that measurements of its size are
useful for managing and estimating maintenance activities.

CMU7SEI-92-TR-20 31

4.2.5. Modified

Modifications are adaptations made to pre-existing statements so that they can be used in a
new product, build, or release. They are common not only during development, but also
during maintenance. Each pre-existing statement that we change and retain through an
action other than automated translation, we count as modified.

Modified statements exclude removed statements and new statements added as part of a
modification process. This means that they can be counted only after software is modified,
not before.

Modified statements also exclude relocated statements. For example, if we move seven
lines of code from the end of a module to the beginning, we count them as seven lines of
copied statements. Since the statements themselves are not modified, this maintains
consistency with the statement-based view of attributes on which the checklist is founded.

Some of the other issues you should consider if you plan separate counts for modified
statements are consistency with IEEE rules, accounting for different levels of development
difficulty, interacting with automated file comparators, and methods for approximating exact
counts. We discuss these issues briefly in the paragraphs that follow.

Consistency with IEEE rules. The rules we use for counting modified statements are
consistent with those in the IEEE draft Standard for Software Productivity Metrics [IEEE 92].
Our interpretations of the rules are as follows:

1. If one pre-existing statement is modified to produce one revised statement, then the
revised statement that results is counted as a modified statement.

2. If one pre-existing statement is modified to produce a revised statement plus N other
statements, then the result is counted as one modified statement and N programmed
statements.

3. If P pre-existing statements are modified to produce N new statements and R
removed statements, then the number of modified statements M is equal to P-R,
and the number of programmed statements is equal to N-M.

Accounting for different levels of development difficulty. Since modifications can range
from relatively simple changes to extremely complex redesigns, some indication of the extent
of prior design, integration, and testing that can be reused may be useful. These evaluations
are usually subjective comparisons, made relative to the work required for new code based
on new design. If your organization would like to capture this information in a structured way,
you may want to consider creating subclasses of modified to record this information.

Automated counting and file comparators. If you are counting modified lines but
excluding comments, you must be very careful to make your counting rules explicit.
Otherwise, confusion can occur when comments are on the same lines as source
statements. File comparators will usually classify a line as modified when any change is
made on that line, even if the only change is to the comment. Most comparators will give
readings as follows:

32 CMU/SEI-92-TR-20

Statement
modified

Yes

No

Comment modified

Yes No

modified modified

modified not modified

A Comparator's Classification of
Modified Lines

This can cause lines to be classified as modified even though no changes have been made
to the source statements on them. A sophisticated comparator or specialized counters may
be needed to distinguish modified statements from modified comments.

Although file comparators exist that can help distinguish new and modified statements from
copied statements, these capabilities are not usually present in today's automated code
counters. Until they are, use of comparators in conjunction with counters is likely to be
needed to get reliable counts for modified, copied, and programmed statements when the
different types are intermixed within individual modules.

Approximations. Some organizations attempt to simplify the rules for identifying and
counting modified code by applying rules such as this:

If a module is changed, then
if X% or more of the lines are changed, count all lines as new (programmed),
else count all lines as modified.

Values of 25, 30, and 50 are often proposed as appropriate settings for the parameter X.

There are at least two flaws in this logic. First, it presumes you can compute the percentage
of lines changed. But to do this, you must have counts for both changed lines and total lines,
so that you can form the ratio. If these counts are available, you may as well use them
directly rather than substitute a less precise measure that requires additional computation.

The second flaw is that, even when approximations or estimates are substituted for
measures of percentage changed, the method fails to deal adequately with statement
removal. For example, in a module of 100 lines (or statements) in which 10 are changed and
50 are removed, different people are likely to arrive at entirely different values for the percent
changed. The number of opinions would multiply even further if, at the same time, 10 new
statements were to be added.

If you want counts of modified statements and if distinguishing modified statements (or lines)
from other production classes is difficult or costly, we recommend that you count the total
number of statements (or lines) and then estimate the number modified. This method for
approximating is at least as effective as the attempts at simplification discussed above. It

CMU/SEI-92-TR-20 33

has the additional benefit of preserving your ability to get consistent counts for generated,
converted, copied, and removed statements.

4.2.6. Removed

The removed class is used to count all statements that are removed from prior code when
that code is copied or modified for use in a new or revised product. Counts for removed code
are most useful when planning and managing activities performed to maintain existing
software systems. They are also useful in a bookkeeping sense to help ensure that all
statements from prior work are accounted for.

Strictly speaking, removed statements do not belong in a size definition because removed
code is never part of a product. However, removed is one of the classes accounted for in the
IEEE draft Standard for Software Productivity Metrics [IEEE 92]. We include it in the
checklist for three reasons:

1. Because we want to help users maintain consistency with the IEEE framework.

2. Because measuring removed code is of interest when effort must be expended to
locate and identify statements that are to be eliminated.

3. Because counting removed code helps us obtain precise accounting of size
changes as programs evolve through successive versions and updates.

A note on terminology: The IEEE draft standard makes a clear distinction between the terms
rejnoved and deleted. Specifically, it uses deleted to describe the sum of all statements
modified plus all that are removed. Thus:

deleted = modified + removed.

Although this is not a definition we would have chosen, we see no need to argue the point.
Because our checklist deals only with mutually exclusive classes, we have no need for the
term deleted, and we do not use it in this report. So, in effect, we have adopted the IEEE
terminology. Since removed does not overlap any of the other classes under the How
produced attribute, using it in our checklist presents no problems.

4.3. Origin

The Origin attribute identifies the prior form (if any) upon which the product software is
based. Differences in origins can have substantial impact on development costs, integration
costs, and product quality.

Automated source code counters cannot by themselves identify the origins of code submitted
to them. If you want separate counts for different origins, you must do one of two things: (1)
segregate your statements by origin and feed each origin class to your line or statement
counter separately; or (2) tag each module or statement (or the beginnings and endings of
each block of statements) with origin codes that the counter can read.

34 CMU7SEI-92-TR-20

If totals are requested for individual origins, then a separate recording form should be used
for each origin so that values for the Origin attribute can be identified and assigned when
results are entered into databases.

Origin Definition Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes

:

Figure 4-3 The Origin Attribute

4.3.1. New work: no prior existence

This class includes all statements that implement new designs. Changes to existing designs
that implement new features or functions are usually best treated as new designs. The key
determinant is the degree of effort (cost) required to design, implement, test, and document
the new code.

4.3.2. Prior work

This class consists of all statements that are reused from existing software or are produced
by adapting or reimplementing existing designs. It includes statements reused or adapted
from a previous version of the current product, from other products, and from software
developed for other purposes. Examples of prior work include not only operational products,
but also reuse libraries, language support libraries, development toolkits, operating system
utilities, and pre-existing components, procedures, and code fragments.

Reasons for identifying prior work. One reason for identifying statements separately
based on prior work is that the total development cost of software produced through reuse is
usually less than the cost of new statements based on new design. This information is
necessary for estimating and planning, for avoiding overly optimistic views of progress, for
correctly interpreting measures of development productivity, and for comparing quality
measures across different projects.

A second reason for separately identifying reused elements is that counts of reused
statements and designs can be used to track the progress and effectiveness of reuse

CMU/SEI-92-TR-20 35

strategies. Previous versions of the current product, commercial off-the-shelf software
(COTS), government furnished software (GFS), and commercial or reuse libraries are
particular examples of prior work that many developers and acquisition agencies will want to
track and account for separately, especially if contractor proposals have relied heavily on
these elements to reduce development costs.

Reasons for excluding prior work. There are at least two origins that most organizations
will want to exclude from source code size measures. The first is unmodified vendor-
supplied language support libraries. These are normally viewed as part of the source
language, almost as extensions of the compiler. Languages like Ada, C, and C++ routinely
use such libraries to provide facilities that other languages imbed in their language
definitions. When these libraries are used without change, they have little impact on
development cost. Most people would view them as part of the environment, not as part of
the product.

The second origin that most would exclude from development size measures is unmodified
vendor-supplied operating system utilities. The reasons are similar—these utilities are
effectively part of the environment; their existence and use within the product require little
testing and documentation; and they add little to development cost. In maintenance
environments, however, the view may differ. Here changes in utilities can require substantial
changes in the programs that use them.

However, if software from either of these classes is modified as part of the development, then
the changes will affect integration, testing, and documentation, and the statements in these
software units should be counted and included in size measures. We have listed the element
labeled "local or modified language support library or operating system" under the Origin
attribute expressly for this purpose.

Methods for excluding prior work. Cases can also occur where the arguments for
excluding language support and operating system libraries from statement counts would
apply to other utility software such as database management, user interface, and statistical
packages. If documentation, integration, and testing of these utilities are not development
issues, then you can add additional lines under the Origin attribute for the express purpose
of excluding these "free" utilities from size counts.

Relationships between the Origin and How produced attributes. Figure 4-4 illustrates
the relationships between the Origin and How produced attributes. This figure shows the
normal relationships that we see during software development. It is possible, however, to
find instances where prior designs are reprogrammed (or regenerated) to produce new code.
In these cases it is appropriate to ascribe prior origins to programmed and generated
statements as well.

36 CMU/SEI-92-TR-20

Origin

previous
version,
build,

or release

COTS

GFS

another
product

local language
library or 0/S

commercial
library

reuse
library

other
components

How Produced

programmed

generated

:-:-:v:-:-:-:-:-:-:vv-:.:-:-:-:-:-:-:-:-:.:-:-:-:-:->:-:.:-::::

converted

copied

:*>••••••••••••••••••£

modified

removed

Figure 4-4 Relationships Between Origin and How Produced

4.4. Usage

The Usage attribute distinguishes between software that is developed or used as an integral
part of the primary product and software that is not. Software intended for different purposes
is often produced using different design, coding, and testing practices; and these practices
can entail different production costs. Identifying these differences is important for estimating
costs and schedules and for interpreting reports of productivity, quality, and progress.

CMU7SEI-92-TR-20 37

Usage Definition Data array
1 In or as part of the primary product
2 External to or in support of the primary product
3

Includes Excludes

Figure 4-5 The Usage Attribute

4.4.1. In or as part of the primary product

This class comprises all code incorporated into the primary product and all code delivered
with or as part of the product that is developed and tested as if it were to operate in the
primary product. In addition to code that is actually used, it can include unused (inoperative)
source code in delivered source libraries, source code for delivered but unused executable
modules or components, and other unused or nondelivered code that is produced with the
primary product as the target. (The fact that code is inoperative or not delivered is accounted
for elsewhere under other attributes.)

4.4.2. External to or in support of the primary product

This class includes all software produced or delivered by the project that is not an integral
part of the primary product. Examples include software such as test drivers, tools,
simulators, trainers, installation code, diagnostic code, and support utility software whose
intended use is outside of the primary product. These kinds of software often have trackable
costs associated with them, especially if they are under configuration control. However, they
may not be built to the same specification levels or with the same formal controls as primary
products. For example, external code and support code may not be subject to the same
level of testing as operational software. Consider, for instance, the differences between
ground test suites and flight software. In other cases, external or support code may be just a
by-product of software development produced under less formal methods. It may also be of
a different character or complexity than operational code.

In all these cases, costs and consequences are likely to be different than they are for the
primary product. When the differences are significant, the inclusion of external or support
code in primary size measures can give misleading indications of progress, productivity, and
quality. Similarly, if some reports of size include this code and others do not, the references
used for cost estimating become confusing and unreliable. Whenever software that is
external to the primary product is of interest, our recommendation is to measure and report
this software separately, so that these problems can be avoided.

If external or support code is to be analyzed with cost models, separate accounting is almost
always required. In fact, whenever these kinds of software components are to be counted,
they are usually best treated as separate products and counted and accounted for
separately. In these cases, separate reporting forms should be used to record and report
measurement results.

38 CMU/SEI-92-TR-20

Runtime systems (i.e., lower level systems upon which delivered applications run) are
sometimes part of delivered products. Source code for runtime systems may not be
delivered or be available to be measured. When it is, it should almost always be measured
and reported separately, as it is likely to have different characteristics and costs than
application software.

4.5. Delivery

The Delivery attribute identifies the form and destination of the source statements that are
produced. Delivered, in each case, means delivered to the organization that will maintain the
software. In commercial organizations, this may mean delivery to the developers
themselves.

The four classes are of interest are shown in Figure 4-6. The total number of delivered
statements (lines 2 plus 3) reflects the view of the buyer, since delivered statements are what
customers perceive they pay for. Configuration control managers, on the other hand, will
more likely perceive size as the sum of lines 2, 3, and 5.

Delivery Definition Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

Figure 4-6 The Delivery Attribute

Separate forms should normally be used when recording or reporting each delivery class.
Otherwise, attempts to account for this attribute while accounting for others like Statement
type and How produced may overload the inherent two-dimensional nature of sheets of
paper.

4.5.1. Delivered as source

This class comprises all code that is delivered to the customer in source form, regardless of
whether or not compiled versions are also delivered. Separate counts of this class are of
interest to maintaining organizations, since delivered source statements are the ones that
they will have to support.

CMU7SEI-92-TR-20 39

4.5.2. Delivered in compiled or executable form, but not as source

Statements in this class can occur unintentionally when the developer does not know or
loses sight of the fact that software is used or installed. They may also be the result of an
oversight—for example, when the developer intended to deliver the source code but forgot.
They can even occur intentionally—for example, when language support software supplied
by a compiler vendor is included in an executable product but is not delivered as source.
There are also instances in contracted developments where a developer's source code is
viewed as proprietary and is deliberately withheld.

Whether or not to include counts of the source code for these statements in measures of
source code size depends on your perspective:

• From a cost perspective, developers will usually need to count source statements for
all code delivered in executable form, especially when estimating costs for proposals
and when calibrating cost models. This applies particularly when code is developed
or changed by the developer, or when it requires integration and testing. Two
subclasses that developers will usually not want to count are code drawn without
change from (a) language support libraries that have been supplied by the compiler
vendor and (b) vendor-supplied operating systems and utilities. Provisions for
excluding these statements are addressed under the Origin attribute.

• From an operational perspective, customers are likely to view statements delivered in
executable form (other than operating systems and standard language support
libraries) as included in system size, and they will want to count the source
statements for this code. Even if delivered only in executable form, the statements do
provide functionality that they are paying for.

• From a maintenance perspective, the number of statements delivered only in
compiled or executable form is rarely of interest, since the class contains no source
statements to be maintained. Maintainers of fielded systems have little use for counts
of source statements that are not delivered to them. The perspective changes,
however, in environments where maintainers are part of the same organization or
company that develops the software. Here there may be strong interest in this class,
if for no other reason than to track it down so that it does get delivered in source form.

When it comes to practice, developers can count only the source statements they know
about and have access to. This rules out all statements available to developers only as
executable code. Unfortunately, it also rules out all source statements that developers lose
sight of, as well as all statements whose executable forms become included in products
without the developers' knowledge. For example, it is not unheard of for entire libraries to be
inserted into a product when only a single function is used. (Some issues related to this case
are discussed in more detail when we address dead or inoperative code in Section 4.6.)

These difficulties exist in all methods that we know of for counting source statements. If
nothing else, recognizing how easy it is to miss source code elements points out how
important effective configuration management practices are to the realization of consistently
defined measurement results. Those who make or use size measurements should work

40 CMU/SEI-92-TR-20

closely with their configuration managers to ensure that processes are in place that identify
and track all source code associated with a project, whether or not the code is obtained from
other sources or intentionally used.

4.5.3. Not delivered

The statements in this class include all source statements that are produced to support
development of the final product but are not delivered to the customer in any form.
Nondelivered code is not product code, either in an operational sense or in the view of the
customer. Some common examples of nondelivered software include tools, test software,
aids to developers, scaffolding, stubs, test drivers, prototypes, simulators, and by-product
software.

Nondelivered software is seldom built to the same specification levels or with the same
formal controls as the primary product. It is usually produced as just part of the job, and it is
often designed and built to be thrown away. For these reasons, counts of nondelivered
statements are seldom used as inputs to software cost models. However, tracking of
nondelivered software can be useful when working to improve development processes.
Software developers may also have reason to measure the size of nondelivered code if they
plan to use it elsewhere.

Another reason for excluding counts of nondelivered statements from measures of product
size is that developers of cost models have usually excluded nondelivered code when they
have constructed and calibrated the equations in their models. Users of these models should
use definitions of size that are consistent with the assumptions on which their particular
estimating tools are based.

Customers never see nondelivered code, and the factors that describe its costs are almost
always different from those of delivered software. When nondelivered code is deemed to be
relevant, we recommend that it be counted separately and not included in total size. Here we
are more cautious than the IEEE draft Standard for Software Productivity Metrics [IEEE 92],
which includes nondelivered source statements as part of software size when the statements
are developed expressly for the final product.

Some forms of nondelivered software do at times get developed and managed as formal
parts of software processes. This can occur, for example, when test cases, test drivers, and
simulators get placed under configuration control so that versions and changes can be
tracked and supervised. The costs associated with producing and managing these elements
may well be of interest. The checklist includes a breakout for this category to assist in
distinguishing these elements from delivered software and to provide for measuring their
size, should such measures be desired.

CMU/SEI-92-TR-20 41

4.6. Functionality

This attribute identifies whether or not source statements are functional parts of the product.
There are two classes: operative code and inoperative code. Inoperative code includes
statements that are dead, bypassed, unused, unreferenced, or unaccessed. It also includes
dead stores (values computed but never used).

Functionality Definition Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes

Figure 4-7 The Functionality Attribute

4.6.1. Operative statements

These statements fulfill the operational requirements of the product. They perform the
functions for which the software system was produced. One characteristic of operative
statements is that they are or should be included in system testing. For this reason,
measures of the size of operative code are the most useful references for tracking progress
and for normalizing quality indicators (e.g., defects per thousand lines of code).

4.6.2. Inoperative statements (dead, bypassed, unused, unreferenced, or
unaccessed)

Inoperative code (dead code, for short) is code that is present in or delivered with a software
application but is never referenced, accessed, or used. It produces no runtime results. It can
occur in several ways:

• In source modules, either as declarations or format statements that are present but
never referenced, or as executable statements that are unreachable because the
path to them is blocked or missing.

• In external (source) files such as include files, generics, macros, or interface
specifications, as statements that are delivered but never referenced and hence
never inserted into compiled modules.

• In compiled modules, as unreachable executable statements that were not identified
and eliminated by the compiler.

• In libraries, modules, or objects delivered as part of the product, in the form of source
or executable modules, procedures, or methods that are present but never accessed
and that the linker has excluded from the load module.

42 CMU/SEI-92-TR-20

• In the load module, as executable but unreachable procedures, functions,
subroutines, or methods.

• In source or executable modules, as the results of computations (dead stores) that
are never used.

Why count dead code? Dead code can be decidedly different from operational code. It is
often not formally designed, not included in system testing, not verified and validated, and not
documented. When any of these steps is missing, the quality and development costs of
dead code cannot be relied upon as being representative of the rest of the software. In fact,
its quality may not even get measured.

Even though we address source-level rather than machine-level size measures in this report,
dead code is of interest in at least two cases:

1. When source code gets counted as delivered but is not an operative part of the
product.

2. When source code gets omitted from counts even though its inoperative
(unreachable), machine-level forms are incorporated in the delivered product.

In the first case, including dead code in size measures may not be in the customer's interest,
nor may it be representative of true progress, productivity, or quality. These are all reasons
to ensure that steps get taken so that dead code is not accidentally included in measures of
system size. In the second case, measuring the amount of dead code that does get into
delivered products is a way to track the effectiveness of practices used to manage and
eliminate dead code.

Why counting can be difficult. Smart compilers and linkers usually remove most dead
code from executable products. However, others that are not so smart do not, and some
linkers bring in entire libraries when only parts of the libraries are used.

Although smart compilers can detect some kinds of dead code, compilers alone cannot find
all of it. Identifying dead code often involves global issues that compilers cannot or do not
resolve. One class of examples includes functions, procedures, and methods that are not
referenced but that are part of referenced units, modules, and objects. Another class
includes unused library routines and functions that get inserted into executable modules
along with active library routines and functions. When either of these situations occurs, dead
code can exist in large blocks, significantly increasing the size of the load module.

Dead code causes problems for measurement because line counters usually cannot
distinguish it from operational code. This presents a serious obstacle not only to separate
counting, but also to preventing dead code from contaminating other counts.

Distinctions between unintentional and functional dead code. Dead code is usually, but
not always, unintentional. Examples of unintentional dead code include loaded but unused
routines and functions, unused methods in object-oriented modules, unused declarations,
unused computational results, and unreachable sections of source routines and functions.
Most customers would not view unintentional dead code as something they pay a developer

CMU7SEI-92-TR-20 43

to develop. Therefore, it is unlikely that customers would want unintentional dead code
included in their primary source code counts.

One example of intentional—and functional—dead code is the use of preset logical switches
in conjunction with conditional compilations to bypass statements that are inserted for
debugging and testing. Another example is the use of conditional compilations to bypass
statements that are used to reconfigure software to fit alternative physical systems or
installations. Some people prefer to call intentionally inoperative code of these sorts
dormant, rather than dead. Organizations that want to subdivide these forms of intentional
dead code can add their specific categories to the checklist in the blank lines that are
provided.

Why be concerned? Inoperative code is of concern for several reasons:

• It can inadvertently become operative if it or other code is modified and recompiled,
and a path to the code becomes activated.

• It can be expensive, especially in maintenance environments. Maintenance costs are
often a function of the volume of code that maintainers must be conversant with.
Maintenance programmers can seldom identify dead code just by looking at a
listing—if the code is in the listing, they must spend time analyzing and understanding
it. Even when they know that sections of code are dead, they may be reluctant to
excise these sections until they can figure out what the sections were supposed to do
and why they have been bypassed. For these reasons, organizations with
maintenance concerns may want to include dead source code in their size counts.

• Dead executable code increases the physical size and memory requirements of
executable products, thereby increasing demands on system resources.

• Statement counts that include dead code can corrupt measures of progress,
productivity, and quality. For example, because dead code is seldom tested,
including dead code in size measures makes productivities appear higher and defect
densities appear lower than they really are.

• A potential exists for grossly misunderstanding size measurements if methods used
for counting or omitting dead code are not specified. For this reason, it is just as
important to state the procedures used to exclude dead code from source statement
counts as it is to state how dead code is counted.

One of the most disturbing issues about dead code is that, as of today, we do not know how
big a problem it presents with respect either to measures of source code size or to the
integrity of software products. The important message is that until we begin to measure dead
code, we never will know.

Dead code is thus a management issue, not just a measurement or definition issue. The fact
that dead code is both difficult to avoid and difficult to identify and count separately does not
mean that the issue can be ignored. Rather, it means that users of measures of source code
size must state what it takes to make their measurements useful, and then they must work
with developers and managers to help make collecting this information possible. When we
apply the checklist to construct example definitions, as we will in Chapter 5, our general

44 CMU/SEI-92-TR-20

recommendation will be to exclude all nonfunctional dead code from measures of software
size, but to count and report it separately, if possible.

One action that some organizations have proposed to help manage and account for
inoperative code is to treat its identification and removal as a separate element in the work
breakdown or cost account structure. Counts of the statements identified and removed can
be useful for quantifying this work and for tracking trends over time.

Because inoperative code is so easy to overlook, measurement results that purport to
exclude it should be accompanied by descriptions of the procedures used to avoid
inadvertently including inoperative code in source code counts.

4.7. Replications

This attribute is used to distinguish a product's master source statements from various kinds
of copies (replicates) of those statements. Since different kinds of replicates have different
costs, this information is important for estimating and planning as well as for measuring and
interpreting progress and productivity.

4.7.1. Master source statements (originals)

Master source statements are the source statements to which changes are made when
revisions are needed. Master source statements may be produced or incorporated into the
product by any of the production processes except removal.

Replications Definition Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes

Figure 4-8 The Replications Attribute

The source code for macros and generics should be counted as master source statements.
All expanded or instantiated reuses of these statements are classified as part of the third
replication class (line 3)—as copies inserted, instantiated, or expanded when compiling or
linking. Source statements in include files and other blocks that get reused through either
manual or automatic copying receive the same treatment—the master code is counted here,
the copies and insertions in classes below.

CMU/SEI-92-TR-20 45

To be counted as delivered source statements, the master source code for macros, generics,
include files, and copied blocks must be delivered to the customer. Otherwise, we would
view the master code for these statements as being delivered only in executable form.

4.7.2. Physical replicates of master statements, stored in the master code

Physical replicates are copies of master source statements that are reproduced—usually in
blocks, before compiling—and included in the product through physical storage in master
source files. Physical replicates are essentially products of cut-and-paste operations.
Because they are produced by physical copying and are stored integrally with master source
code, they will usually be counted along with master source statements as part of delivered
products. Most organizations will want to do this anyway because, once copied, physical
replicates have to be maintained.

Physical replicates are seldom present when include file capabilities are available and used.
The use of include files is almost always preferred over cut-and-paste copying, since these
files provide central points for making changes that affect all replicates.

Physical replication is a form of reuse. Some organizations may want to include them in their
reuse counts. If you would like to do this, you will probably have to mark every physical
replicate with a distinctive tag. Otherwise, you will not be able to distinguish physical
replicates from master source statements.

Physical replicates do not include backup files. Backup files, if counted at all, are always
^counted separately.

4.7.3. Copies inserted, instantiated, or expanded when compiling or linking

Examples of this class include the results of insertions from include files, the expansions of
macros and inlined functions, and the code produced through instantiations of generics. In
all cases, the original source statements for these copies are counted as master source
statements.

Because statements in this class are never physically present in master source files, they are
seldom identified separately as items for configuration control. The master source
statements, though, should be deliverable and under configuration control.

The significance of replications in this class, and decisions as to whether or not to count the
code they produce or include these counts in size measures, will depend on how and where
size measures are used. There are at least four reasons not to count these replications:

• Because automatic reproduction and insertion costs are very low, these statements
are of little interest to cost estimators, especially since the design and programming
effort to instantiate or insert them is accounted for in the declarations and activation
statements that are part of the master source code.

46 CMU/SEI-92-TR-20

• Because creation is automatic, these statements are usually of little significance to
project tracking.

• Because these copies are never physically stored in source form, they are never, by
themselves, under configuration control. Hence, they are of little interest to
configuration managers.

• Because these copies are identical to statements in the master source code, it would
be redundant and confusing to include them in size measures used to normalize most
measures of process and product quality.

There are, however, good reasons for counting automatic replications. For example,
insertion and instantiation are forms of reuse. Counts of these copies may help to describe
product size as customers and reuse managers view it, especially when quantifying the
extent to which reuse strategies have been used to reduce development and maintenance
costs. Attention must be paid to consistency with other rules, however, since in many cases
these copies are nothing but logical equivalents of procedure or function calls.

Another reason to be interested in this class of replications is that copies reproduced or
inserted at compile or link time can, in their executable forms, significantly affect the use of
runtime resources. Changes in the efficiency of the source code for these copies can have
operational impact in many places.

Subcategories of this replication class may be created and added to the checklist when
separate accounting for subcategories is desired.

4.7.4. Postproduction replicates

Postproduction replicates are copies of the product that are generated from the master
source code and form part of the extended operational system or part of alternative products.
They can occur in the following kinds of software:

• High-reliability systems, where multiple copies operate in parallel and comparisons of
operational results are used to identify and correct runtime errors.

• Distributed systems, where individual executable copies are installed at multiple
nodes.

• Parameterized systems, where recompilations are used to create operational
versions that are configured to fit different systems, missions, sites, hardware
configurations, or memory models.

There are several reasons for measuring the size of postproduction replicates. For example,
postproduction replicates often require independent testing and installation. In these cases,
size measurements will be of interest to estimators, planners, and progress trackers. In other
instances, postproduction replicates may be the result of conscientious efforts to take
advantage of code reuse. Here, size measurements may be wanted to help track and report
on reuse trends.

CMU/SEI-92-TR-20 47

It is best to use separate forms for reporting counts for postproduction replicates. Otherwise,
descriptions of system size can become confusing and ambiguous.

4.8. Development Status

This attribute describes the degree to which statements under development have progressed
toward becoming integral parts of operational products. It is of primary interest during
development and maintenance activities. In other situations, measures of size usually refer
to a product that has completed system testing.

Development status Definition Data array
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

Figure 4-9 The Development Status Attribute

When this attribute is used to track development progress, the statements within a software
unit will usually all have the same status. This status should be noted on the recording form
or otherwise entered into the database.

When the checklist is used to define tracking measures, you should modify or augment the
list of states to ensure that it adequately describes the processes you employ. For example,
organizations using variations of Boehm's spiral model for software development [Boehm 88]
may want to insert states for tracking the amounts of prototype code they develop.

Once prototyping is complete and final development has started, states are normally listed in
a progress-ordered sequence, much like the one shown in Figure 4-9. Here totals for
individual states can readily be aggregated and summarized for project tracking and cost
analysis. When this is done, it is usually most useful if status information is displayed in
cumulative form as the sums of statements that have attained or passed through individual
stages (Figure D-1 in Appendix D is an example). The raw data, however, should always be
collected and recorded under the identical rules that apply to other attributes—that is, each
statement gets assigned one and only one status value.

48 CMU/SEI-92-TR-20

In many respects, the Development status attribute is the most important one on the
checklist. As software proceeds through development, work on different components and
units will start at different times and proceed at different rates. Individual and cumulative
counts for statements that have completed different stages can be extremely helpful in
monitoring progress and in adjusting plans and schedules for downstream activities.

For example, since coding precedes unit testing and unit testing precedes integration into
components, measures for the number of statements already coded can be used to adjust
plans and schedules for unit testing and integration. Also, since counts of the total number of
statements coded are available well before integration is complete, they can be used as a
baseline for monitoring the degree of progress toward completion of a final product.

Counts of source statements for stages that precede coding are usually estimates. This fact
and the way such estimates are used suggest several things:

• The checklist can be used to define the meaning of estimates as well as of actual
measurement results.

• The same definition should be used for estimates as for actual measurements.

• Databases and recording forms must distinguish between estimated and measured
sizes.

• Estimates should be updated whenever downstream measures are updated, or else
the bases for projecting downstream sizes and for interpreting progress toward
completion of downstream activities become untrustworthy.

Tracking development status is essential to successful software management. It is one of
the few ways in which early warnings of pending overruns and schedule slips can be
obtained. We cannot imagine a definition of software size that would not contain provisions
for tracking progress during development operations.

4.9. Language

This attribute identifies the source languages or languages that are included in a statement
count.

Comparing counts of physical or logical source statements across different source languages
is difficult. Some professionals argue that language comparisons should be attempted only
with a comprehensive model that accounts for language differences. Among their reasons is
the fact that the logic content per source statement is not constant (e.g., Ada vs. C, Lisp vs.
FORTRAN, 3GL vs. 4GL, assembly vs. 3GL, and microcode vs. anything else). Moreover,
some languages make heavy use of support libraries to provide capabilities that are integral
to other languages. In these cases, distinguishing between language features and countable
code can be difficult. Examples where language support libraries are often treated as part of
the language include C, C++, Ada, and Modula-2. Whether to count the code drawn from
these libraries as part of a product is debatable, and the decision depends on the purposes
for which counts of source statement will be used.

CMU/SEI-92-TR-20 49

Language Definition Data
List each source language on a separate line.

1

array Includes Excludes

2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 4-10 The Language Attribute

Different languages may also have different costs per logical source statement or physical
line. For these reasons as well as those described above, combining counts from different
source languages rarely makes sense. When costs or logic content per logical statement or
line are different, combining counts from different languages can easily give misleading and
erroneous pictures of development progress.

4.10. Clarifications (general)

Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate genetics
4 Begin...end and {...} pairs used as executable statements
5 Begin.. .end and {...} pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16

r

Figure 4-11 Clarifications—Inclusion and Statement Typing Rules for Program Elements

50 CMU/SEI-92-TR-20

This section of the checklist helps us clarify the rules we use to assign statements and lines
to the Statement types described in Section 4.1. It deals with issues that are common to
many programming languages. Subsequent sections address the special features of some
frequently used programming languages. In each case, boxes have been provided to the left
of the inclusion column so that the program elements listed can be assigned to specific
statements types.

4.10.1. Nulls, continues, and no-ops

These are statements that, by themselves, have no effect on a program's logic other than to
pass to the next statement. They do, however, have uses. For example, they can be used
to show that a statement has been deliberately omitted, or they can be placeholders for a
future statement. They can also be used as points to attach a label, so that the labeled
statement may become a destination or termination of a logic path.

In some cases (e.g., assembly languages), no-op statements can consume execution time.
Programmers have been known to use sequences of no-ops to introduce delays for timing
purposes. Most organizations now discourage this practice, as it leaves latent problems in
the code. Counting no-ops can be a first step toward eliminating these problems. (Source
code optimizers effectively prohibit using this trick in higher order languages, even if the
language standard does not otherwise rule it out.)

Because null statements, continue statements, and no-ops invoke action (passing to the next
statement), most language standards define them to be executable, and most people count
them accordingly. This, in fact, is our normal practice. By using line 1 to describe our
practices, we avoid confusion when communicating with others who might consider a
statement that performs no action to be nonexecutable.

4.10.2. Empty statements

Empty statements occur when two or more statement delimiters appear in succession. They
can also occur when pairs of delimiters are separated by one or more blank characters or
when the delimiters are on different source lines. Moreover, when statement delimiters are
separators rather than terminators (as in Pascal), empty statements occur when optional
separators are used where they are not required.

Since empty statements have no information content and cause no program action, some
people view them as the logical equivalent of blank physical lines. People having this view
may want to exclude empty statements from source code counts, especially if they are
counting logical source statements. Other people view empty statements as placeholders
whose purpose is to call attention to the fact that something has been deliberately omitted or
deferred. These people will usually want to include empty statements in source code counts,
especially if they are counting physical lines.

CMU/SEI-92-TR-20 51

Note that, except as implied by location, it is impossible to distinguish an empty executable
statement from an empty declaration or from an empty anything else. This reason alone is
sufficient to require explicit treatment of empty statements when constructing a definition.

4.10.3. Statements that instantiate generics

Statements that instantiate generics are normally defined by language standards to be decla-
rations. Once created, however, instantiations are accessed via executable statements.

4.10.4. Begin...end and {...} pairs used as executable statements

When these block statements appear in an executable context, they are almost always
executable statements, even when empty [Ada 83, Kernighan 88, Stroustrup 87]. They
instruct the computer to execute the sequence of statements that is enclosed within the
block. Note that this implies that structures like the following count as n+1 logical statements
or n+2 physical statements, not as n statements.

begin
statemenM;
statement_2;

statements;
end;

4.10.5. Begin...end and {...} pairs that delimit (sub)program bodies

When these symbols accompany program or subprogram declarations, as some language
standards require, they are usually integral parts of the declarations themselves. No
language standard that we know of classifies them as executable statements, let alone as
logical statements in their own right.

For example, this Pascal program counts as a single declaration "statement':

program ShortExample (input, output, DataFile);
{declarations go here}

begin
{executable code goes here}

end.

We put quotes around the word "statement" here because, strictly speaking, declarations are
not statements. Pascal, like Ada, C, and C++, uses the term "statement" to designate
executable statements only. Our use of the term in this report is somewhat more relaxed.

52 CMU/SEI-92-TR-20

Distinctions between these blocking symbols and those that identify executable block
statements require relatively sophisticated source code counters. Users of definitions that
make distinctions between executable and nonexecutable statements should be sure to
indicate, via a modified definition checklist, when the tools they use are unable to
accommodate the definitions they have agreed to employ.

4.10.6. Logical expressions used as test conditions

Logical expressions return values. In this sense, they are executable. Moreover, they are
usually recognized as executable entities by source code debuggers (single stepping and
examination of values is permitted).

For example, a physical line like

if A then B;

is viewed by most languages as two logical statements:

"if A then < >;" and
"B".

Here "A" is an expression that returns a value of either true or false, and the computation of
this value is a step that interactive debuggers can count and can pause to examine.

Nevertheless, except possibly for expression-based languages like C and C++ which have
facilities for expression statements, entities like "A" are technically parts of other executable
statements (the if statement, in this case). Because language standards and reference
manuals do not usually classify logical expressions as statements in their own right, they are
not normally included in counts of logical source statements. However, organizations can
certainly have different opinions and use their own specialized counting rules. We include
this element on the checklist so that the rules that are used can be made explicit.

4.10.7. Expression evaluations used as subprogram arguments

The observations here are essentially the same as those for logical expressions above.

4.10.8. End symbols that terminate executable statements

These end symbols are not normally logical statements by themselves—they are merely
parts of the logical statements they terminate, even when on separate lines.

CMU/SEI-92-TR-20 53

4.10.9. End symbols that terminate declarations or (sub)program bodies

Again, these are not normally statements by themselves—they are merely parts of the
statements or declarations they terminate, even when on separate lines. FORTRAN'S END
statement is an exception. It is defined by the language standard to be executable.

4.10.10. Then, else, and otherwise symbols

These symbols are normally parts of statements, not statements by themselves. They may,
however, bracket or delimit other (usually executable) statements. If they do, the rules for
recognizing these delimiters should be spelled out on the supplemental rules form, so that
there are no misunderstandings when designing or using automated source code counters.

4.10.11. Elseif and elsif statements

Different languages classify these differently. For example, Ada treats its elsif as an integral
part of the if statement in which it is used. This makes it consistent with the way most
languages treat case statements. In other languages, elsif or elseif statements can be
executable statements in their own right, each having its own conditional clause and
executable part, although the executable part may be empty. Statements within an
executable part are counted as executable statements in their own right, just as are the
contents of begin...end pairs.

4.10.12. Keywords like procedure division, interface, and implementation

Keywords and expressions like these are sometimes used by language standards to identify
and bound specific sections of code. Since they are not executable, they are declarations.
They declare to the compiler and to the reader the kind of code block that they initiate or
terminate.

4.10.13 Labels (branching destinations) on lines by themselves

A test and branch to the end of a block is often used to bypass the remaining statements in a
block or to exit a loop. Although many languages require this branch to be made to an
executable statement, others do not. Some languages do not even require that a statement
be present—a label alone may suffice. When this occurs, we need to know the rules used to
determine: (a) do we count the label? and (b) if we are classifying statements by type, how
do we classify it?

54 CMU/SEI-92-TR-20

4.11. Clarifications for Specific Languages

The remaining sections of the checklist provide places for describing the special counting
rules used with different programming languages. These sections are far from complete,
either in terms of languages covered or details addressed. We strongly encourage you to
add to the examples (and languages) that we list. To illustrate the kinds of points that need
to be settled, we draw your attention to three often disputed cases: C's stylistic use of braces,
the treatment of expression statements in expression-based languages, and FORTRAN'S
FORMAT statement.

4.11.1. Stylistic use of braces

The C and C++ languages use braces to identify and bound blocks of code. It is customary
for programmers to place these braces on lines by themselves. The purpose is to guide the
eye when reading source code, so that beginnings and endings of sections and block
statements can be quickly identified.

This stylistic use of braces raises the question, "Should solitary braces be included in counts
of physical source lines?" The answers are almost guaranteed to generate heated debate.
On the one hand, a single brace bears little semblance to our usual view of a source
statement. Displaying one on a line by itself doesn't do anything to a program's logic. For
this reason, many cost analysts advocate treating solitary braces as blank lines, arguing that
they serve the same purpose that white space does in the coding styles associated with
other languages.

On the other hand, users of other languages frequently count lines that perform equivalent
functions. For example, several languages have begin and end keywords that become used
in exactly the same stylistic way as C and C++ use braces. Organizations that use these
languages often include these keywords in their line counts, even when they are on lines by
themselves.

In either case, you should make your counting rules explicit if you want to know what your
source line counts represent. Moreover, if you want to compare measurement results across
different languages, you should probably make the rules the same for all languages. Since
we have no statistical evidence to support a preference for exclusion over inclusion, we are
inclined (for the time being, at least) to include these lines in our own counts. They are, after
all, physical lines of code. This simplifies the counting process because it means that no
special rules need be developed for skipping these lines. It also avoids introducing what is
essentially a logical source statement concept into a physical line count. If we want to
exclude solitary braces and solitary keywords, we can always elect to count logical source
statements instead of physical lines.

CMU/SEI-92-TR-20 55

4.11.2. Expression statements

C and C++ are expression-based languages. In these languages, expressions such as x = 0
or /'++ become statements when followed by a semicolon. Expression statements are
executed by evaluating the expression and then discarding the result. This is useful if
evaluation involves a side effect, such as assigning a value to a variable or performing input
or output.

The lines that follow provide four examples. In each case, the line would be an expression if
it did not have a semicolon. The presence of the semicolon converts the expression into a
statement.

distance = speed * time; /* assigns the product to distance 7
printf(uHello world!"); /* calls the function printf 7
++counter; /* adds 1 to counter 7
(x < y) ? ++x : ++y; /* increments x when x is

smaller than y, else increments y 7

Note that the first two lines illustrate an assignment and a function call, actions that almost all
languages treat as executable statements. The third and fourth lines have executable
counterparts in many assembly languages.

If you are counting logical source statements and if your practice is to classify expression
statements as executable statements, you must be both explicit and complete when stating
your rules with respect to semicolons. For example, expressions followed by semicolons
occur also as test conditions in for loops. The rules you state should make it clear whether
or not you count these constructs as individual statements.

4.11.3. Format statements

Counting rules for format statements vary considerably among different cost estimators. To
help you decide how you wish to count format statements, we offer the following brief
discussion.

Format statements are statements that provide (often static) formatting rules and textual
labeling for information that is displayed on screens, printed on output reports, or sent to files
or other output devices. They are also used to define the ways in which input information is
interpreted and edited. In FORTRAN, format statements direct "the editing between the
internal representation and the character strings of a record or a sequence of records in a
file" [FORTRAN 77]. The FORTRAN language standard classifies format statements as
nonexecutable and treats them as constants or data to be interpreted and processed at run
time. Thus, in the terminology of the checklist, they are declarations.

Some cost models adopt this view, treating format statements as data and excluding them
from counts of executable statements (PRICE S is an example). These models account for
the effort involved in designing, coding, and testing format statements through the weights
they give to the associated executable write and print statements. Users of these cost

56 CMU/SEI-92-TR-20

models will usually want to measure and account for format statements individually, so that
they can adjust their size measures to fit the models they use.

Because format statements are sometimes treated as data and at other times as declarations
or executable statements, size definitions that combine counts of format statements with
counts for other statement types should make the rules visible in the respective language-
specific clarifications. For languages without specially designated format statements, this
may not be an issue. Even here, however, counting the equivalent operations—and counting
them equivalents—may be important when comparing size measures from different
languages. If so, then the ground rules for identifying and counting formatting operations
should be spelled out.

CMU/SEI-92-TR-20 57

5. Using the Checklist to Define Size Measures—Nine
Examples

The definition checklist can be used in two different ways: to describe size measurements
after they are made and to prescribe how we want them to be made.

When we introduced the checklist in Chapter 3, our focus was on descriptive use. We now
present examples in which we apply the checklist, together with the results of our discussions
in Chapter 4, to construct definitions (prescriptions) for two specific measures of software
size—physical source lines of code (SLOC) and logical source statements. We then present
several examples of data specifications, so that you can see how a common definition can be
used by different people while giving each the flexibility to collect the data they need. This
flexibility is important because it permits us to hold basic definitions stable while adjusting to
the changing information needs that accompany advancing levels of process maturity.

Note that although we present the definitions and data specifications in the context of
requirements for inclusion and exclusion, you can also use the checklist simply to record and
report the rules and practices associated with measurements that have already been made.
Indeed, it can be interesting and informative to do this for size values in the databases you
currently use. For example, cost estimators who use historical data for calibrating cost
models will find the checklist useful in pinning down and recording the exact meanings of the
size data they have in their files, especially if the data has come from different sources or
was collected at different points in time. Once estimators have the insight that completed
checklists provide, they can adjust their models and calibrations to fit the definitions that were
actually used when the measurements were made.

This descriptive approach is essentially the one we used when we constructed the checklist.
First we posed the question: "What is it that we need to know when we use the measures of
source code size that are reported to us?" We then observed that if we can capture this
information in a structured framework, it is easy to turn the framework about and use it in a
prescriptive sense to tell others how to collect and record the information we need.

Figures 5-1 and 5-2 show our example definitions for physical source lines and logical source
statements. They represent consensus recommendations from those who have helped
prepare and review this report. Organizations with needs that these examples do not satisfy
should adjust our recommendations to fit their individual requirements.

Our goals in preparing the examples are to define, to the extent possible, measures that can
be used comparably across organizations and consistently over time. We believe that as
software organizations move to higher process maturities, they should not be forced to
discard historical data collected along the way just because their information needs change
or become more refined.

A word of caution: Although the checklist can be used to create and report many different
definitions of size, this does not imply that having many definitions is a good idea. A

CMU7SEI-92-TR-20 59

consistent definition for size within projects is a prerequisite for project planning and control,
and a consistent definition across projects is a prerequisite for process improvement.
Moreover, once a consistent definition is in place, organizations will no longer have to resort
to reconstructing the definitions used to capture historical size data.

This chapter deals primarily with the coverage of definitions and data specification. The
emphasis here is more on what to count than how to count. Additional points that need to be
addressed to fully define for a counting unit are discussed in Chapters 6 (Defining the
Counting Unit) and 7 (Reporting Other Rules and Practices—The Supplemental Forms).

5.1. Physical Source Lines—A Basic Definition

Figure 5-1 shows our recommended definition for counting physical source lines of code.
This definition explicitly identifies the values for each attribute that we include in or exclude
from our statement counts. The checks in the Definition boxes for eight of the attributes
distinguish the rules for those attributes from requests for counts of individual data elements.
The check in the Definition box for the Language attribute shows that we want a separate
count for each source language we use. In Section 5.3, when we introduce data
specifications, we will illustrate other cases where we use the checklist to explain the rules
for counting individual data elements.

Our treatment of the Development status attribute on page 2 of the checklist may at first
glance seem counterintuitive. Here we have excluded statements from everything but the
final product. When we build or modify software systems, we will certainly be interested in
counts for the numbers of statements in intermediate stages of development. These
progress measures, however, are best dealt with via data specifications like those in Section
5.3. In most other circumstances, we want a single definition that we can use for purposes
such as estimating the size of a project, tracking convergence to a planned target, describing
a product to a customer, and calibrating cost models. The single check in the Includes
column for development status provides this definition. It means that we define software size
to be the size of the finished product.

60 CMU/SEI-92-TR-20

Definition Checklist for Source Statement Counts

Definition name: Physical Source Lines of Code Date: 8/7/92
 (basic definition) Originator: SEI

Measurement unit: Physical source lines
Logical source statements B

Statement type Definition !• | Data array
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

Includes Excludes

1 •

2 •
3 •

*4~ ""•"'''
5 •
6 •
7 •
8 •

How produced Definition [• | Data array
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Includes Excludes
•
•
•
•
•

•

Origin Definition [• | Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•
?:KSS:K:::S;:::S

•
Svl&iSStt:::^

•
•
•

•
•

•
•
•
•

Usage Definition !• | Data array
1 In or as part of the primary product
2 External to or in support of the primary product
3

U Includes Excludes
•

•

Figure 5-1 Definition for Physical Source Lines of Code (SLOC)

CMU/SEI-92-TR-20 61

Definition name: Physical Source Lines of Code
(basic definition)

Delivery Definition [• | Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
•

 •
•

Functionality Definition | • | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
•

Replications Definition | • | Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition !• I Data array
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

•
•
•
•
•
•
•

•

Language Definition Data array !• |
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes
wmm

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 5-1 Definition for Physical Source Lines of Code (SLOC), Page 2

62 CMU/SEI-92-TR-20

Definition name: Physical Source Lines of Code
(basic definition) Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate genetics
4 Begin...end and {...} pairs used as executable statements
5 Begin...end and (...) pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

C and C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a lor" statement
4 Block statements (e.g., (...) with no terminating semicolon)
5 "{", "}", or "};" on a line by itself when part of a declaration
6 "{" or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

1 •
1 •
4 •
1 •
s •
1 •
1 •
1 •
3 •
1 •
1 •
3 •
1 •

3 •
1 •
3 •
1 •
3 •
4 •

1 •
•

1 •
1 •
1 •
1 •
3 •
1 •
4 •
4 •

Figure 5-1 Definition for Physical Source Lines of Code (SLOC), Page 3

CMU/SEI-92-TR-20 63

Definition name: Physical Source Lines of Code
(basic definition) Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type ->
2
3
4
5
6
7
8
9

3 •

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

3 •

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

1 •
3 •
3 •

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

1 •
3 •
$ •

Figure 5-1 Definition for Physical Source Lines of Code (SLOC), Page 4

64 CMU/SEI-92-TR-20

Definition name: Physical Source Lines of Code
 (basic definition) Includes Excludes

1
2
3
4
5
6
7
8
9

10
11
12

Listed elements are assigned to
statement type ->

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
genetics, macros, and deferred constants. Declarations also include renaming declarations, use.
clauses, and declarations that instantiate genetics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

Figure 5-1 Definition for Physical Source Lines of Code (SLOC), Page 5

CMU/SEI-92-TR-20 65

5.2. Logical Source Statements—A Basic Definition

Figure 5-2 shows our recommendation for a definition for counting logical source statements.
This definition is identical to the one shown for physical source lines, except for the
Clarifications sections on pages 3 and 4 of the checklist. The similarities in treatment of
attributes should come as no surprise—the coverage and tracking issues are the same for
the two measures. The differences in the Clarifications sections address details of counting
that have to be spelled out to make measures of logical source statements rigorous and
repeatable.

Organizations implementing this definition for logical source statements should review
carefully—and augment, where necessary—the language-specific clarifications. They should
also complete and append a supplemental rules form like the one in Chapter 7. These steps
are even more important here than they are for physical source lines of code. Without
complete sets of clarifications and supplemental rules for each language measured,
important low-level decisions will be left to the judgment of others. If this happens, then
users of measurement results may never know what decisions were implemented, and
measurements made by different teams may have entirely different meanings. What's more,
organizations will have no reason to believe three or four years later that they are still
following their original counting practices.

66 CMU/SEI-92-TR-20

Definition Checklist for Source Statement Counts

Definition name: Logical Source Statements Date: 8/7/92
 (basic definition) Originator: SEI

Measurement unit: Physical source lines 1 1
Logical source statements !• |

Statement type Definition W 1 Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1 •

2 •
3 •

4
,,,„_,..

5 •
6 •
7 •
8 •

How produced Definition !• I Data array Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

•
•
•
•
•

•

Origin Definition !• I Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

:

•
•
•

•
•

•
•
•
•

Usage Definition [• | Data array
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes
•

•
3

Figure 5-2 Definition for Logical Source Statements

CMU/SEI-92-TR-20 67

Definition name: Logical Source Statements
(basic definition)

Delivery Definition !• 1 Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under contiguration control
7

Includes Excludes

•
•

•
•

Functionality Definition [• | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

Am
•

•

Replications Definition [•] Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

includes Excludes
•
•

•
•

Development status Definition !•! Data array
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

mm 'mmi
•
•
•
•
•
•
•

•

Language Definition Data array [• |
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

T"
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 5-2 Definition for Logical Source Statements, Page 2

68 CMU/SEI-92-TR-20

Definition name: Logical Source Statements
(basic definition) Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate genetics
4 Begin...end and {...} pairs used as executable statements
5 Begin...end and {...} pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16

1 •
•

3 •
l •

•
•
•
•
•
•

1 •
3 •

•

Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

 •
1 •
3 •

•
3 •
4 •

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

1 •
•

C and C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a "for" statement
4 Block statements (e.g., {...} with no terminating semicolon)
5 "{". T. or "};" on a line by itself when part of a declaration
6 "{" or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#it, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdet, and #ifndef
9

10
11
12

•
1 •
1 •
1 •

•
•

4 •
4 •

Figure 5-2 Definition for Logical Source Statements, Page 3

CMU/SEI-92-TR-20 69

Definition name: Logical Source Statements
(basic definition) Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type ->
2
3
4
5
6
7
8
9

3 •

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

3 •

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

1 •
3 •
3 •

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

1 •
3 •
S •

Figure 5-2 Definition for Logical Source Statements, Page 4

70 CMU/SEI-92-TR-20

Definition name: Logical Source Statements
 (basic definition) Includes Excludes

1
2
3
4
5
6
7
8
9

10
11
12

Listed elements are assigned to
statement type ->

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

Figure 5-2 Definition for Logical Source Statements, Page 5

CMU/SEI-92-TR-20 71

5.3. Data Specifications—Getting Data for Special Purposes

The next seven examples show how the checklist for source code size can be used to define
rules for capturing different sets of data:

• Data Spec A (project tracking): an example that asks for the size data of the sort you
should be using to track development status.

• Data Spec B (project analysis): an example that asks for end-of-project data you can
use to improve future estimates.

• Data Spec C (reuse measurement): an example that asks for data that you can use to
evaluate the extent of software reuse.

• Data Spec B+C (project analysis): an example that shows how two data
specifications can sometimes be combined.

• Dead code counting: an example that shows how you can use the checklist to define
the rules used to collect separate counts for dead code.

• Relaxing the rule of mutual exclusivity: an example of a case where double counting
can be useful.

• Comment subtypes: an example that shows how you can use the checklist to get
detailed data on subsets of attribute values

In presenting these examples, an important point deserves emphasis: Although the
measurement and recording requirements for the examples differ, the definition of software
size remains constant—only the supplemental data elements recorded change. Thus, the
meanings of reported sizes do not change. The different sets of data simply provide
additional insights into the progress or processes associated with developing and maintaining
software systems.

The Clarifications sections on pages 3 through 5 of the checklist are not reproduced with
the example data specifications in this section, since they remain the same as in the basic
definitions in Figures 5-1 and 5-2. You should complete these pages and include them with
your data specifications whenever the checks on these pages differ from those in the basic
definition. You should also include the Clarifications pages whenever a checklist for the
basic definition is not attached. When the Clarifications pages are attached, the data
specification must be restricted to either physical lines or logical statements since the
language-specific counting rules for the two measures will differ.

5.3.1. Specifying data for project tracking

The first example is our view of a useful specification for the size data we would like to have
for basic project tracking. Suppose we want to track the progress of a product through each
our production processes (the How produced attribute). To do this, we will need to make
periodic measurements in which we line our size observations up against the Development
status attribute, as illustrated in Figure 5-3.

72 CMU/SEI-92-TR-20

CD

O
O

T3
£
00

z
c

"O
CD

£

te
st

 r
ea

di
ne

ss

re
vi

ew
 c

om
pl

et
ed

C
S

C
I

te
st

s
co

m
pl

et
ed

sy
st

em
 t

es
ts

co

m
pl

et
ed

programmed

generated

converted

copied

modified

removed

Figure 5-3 Example Data Array for Project Tracking

We could try to state this specification in words. Were we to do so, the results might look like
this:

Data Specification for Project Tracking (An Example)
For each source language, measure and record these values:
• Total lines (or statements)
• A two-dimensional array showing the number of lines (statements)

- in each development status
- for each production class

Although this specification seems neat and logical, it is not precise enough to ensure that we
will get the data we want, or that we will know what is in the data we get. For example, there
is nothing in this verbal specification that says which elements of Development status and
How produced are to be measured (we might want only a subset), or what rules are to be
applied to the other attributes.

Figure 5-4 shows how much more explicit we can be, if we use the definition checklist to
express our requirements. The two attributes to be measured are identified by checkmarks
in their Data array boxes. The Language attribute also has its Data array box checked to
show that we want separate counts for each source language. The Definition boxes are
checked for the other attributes to show that they describe the coverage rules to be applied
when counting and recording values for the How produced and Development status
attributes.

CMU7SEI-92-TR-20 73

Definition Checklist for Source Statement Counts

Definition name: Data Spec A: Project Tracking Example Date:
 (for tracking status vs. how produced) Originator:

8/7/92
SEI

Measurement unit: Physical source lines
Logical source statements a

Statement type Definition | • | Data array
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

_i Includes Excludes

1 •

2 •
3 •

4 •
5 •
6 •
7 •
8 •

How produced Definition] | Data array
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

w Includes Excludes
•
•
•
•
•
•

Origin Definition !• | Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

•
•
•
•

•
•

•
•
•
•

Usage Definition !• | Data array
1 In or as part of the primary product
2 External to or in support of the primary product
3

u Includes Excludes
•

•

Figure 5-4 Data Spec A (Project Tracking)

74 CMU/SEI-92-TR-20

Definition name: Data Spec A: Project Tracking Example
(for tracking status vs. how produced)

Delivery Definition [• | Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

y/

•
> >* :»¥:¥:¥« ¥« i i Ill 1

•
•

Functionality Definition !• | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
•

Replications Definition [•J Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition Data array !• I
Each statement has one and only one status,
usually that of Its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

 •
•

•
•
•
•
•
•

Language Definition Data array !• |
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

•

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 5-4 Data Spec A (Project Tracking, Page 2)

CMU/SEI-92-TR-20 75

Figure 5-3 showed why we use the term Data array when defining the elements we want
measured. In Data Spec A, we want to track the progress of each production process. This
means that we must get separate counts for each intersection of the How produced and
Development status attributes. Without array structures for recording this data, we would
be unable to distinguish progress in copying or modifying code from progress in developing
new statements. As a consequence, we could be presented with overly optimistic pictures of
development progress.

We can easily show that total size alone is inadequate as a progress measure—all we have
to do is picture a case where substantial portions of the code are expected to be copied from
pre-existing components. Figure 5-5 shows such an example. If we know only that 40%,
say, of our total statements are coded, we have no way of knowing what proportion of the
programming work we still have ahead of us. The inadequacy of total counts as
management metrics is compounded further if, as in Figure 5-5, substantial portions of
copied code turn out to be unsatisfactory and have to be replaced.

200

100

Source Lines Coded
(thousands) Planned

• Programmed
• Modified
H Copied

1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25

Contract Month

Figure 5-5 The Case of Disappearing Reuse

There is no requirement that the coverage rules for any of the attributes in a data specifica-
tion be the same as those used in our basic definition for size. For example, if we want to
track progress in developing software used external to or in support of our primary product,
we can simply reverse the checkmarks under the Usage attribute. Alternatively, we can
check the Data array box for the Usage attribute and then, by checking both elements under
that attribute, show that we want counts for both elements included in the recorded data.

76 CMU/SEI-92-TR-20

Similarly, the values included in a Data array need not match those included in a basic size
definition. In Data Spec A, for example, several Development status values for which
counts are requested are not included in the basic definition. Counts for removed statements
were also requested, even though they are not in the basic definition for size. In the example
for Data Spec B in the next subsection, counts will be requested for two different types of
comments—neither of which is included in the basic definition for size.

Counts for data elements defined by data specifications are always made in addition to the
counts made for a basic definition for size. The processes of counting, recording, and
reporting these supplemental elements never change the basic definition.

When tracking progress, you may, if you wish, collect only subsets of Data Spec A. For
example, if code removal is not labor-intensive for your project or if there is no generated or
converted code, these elements (the rows in Figure 5-3) can be deleted from Data Spec A.
Similarly, if a software development process has no formal test readiness review or if final
software tests are system tests, the columns in Figure 5-3 for the respective Development
status elements can also be omitted. The checklist for Data Spec A should then be modified
as illustrated in Figure 5-6 to formalize these specifications and relate them to the rules that
apply to other checklist attributes. The simplified data array that results would then look like
Figure 5-7. Here only 12 data elements need to be counted rather than the 36 in Data Spec
A. This reduced array is sufficient for gathering data for relatively simple plots like the one in
Figure 5-5, where we illustrated The Case of Disappearing Reuse.

How produced Definition
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

| | Data array [• | Includes Excludes
•

•
•

•
•

•

Development status Definition Data array !• |
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

•iviyi-Jv^yiyXy:-;-:::::-:*:*:*: :•>:•:

•
•

•
•
•

•
•

•

Figure 5-6 Specification for a Simplified Data Array

CMU/SEI-92-TR-20 77

TO

T3
CD

T3
CD te

st
s

3t
ed

CD C/3
CD i EQ.

•*—i

CD $ £ o •~ </i o
3 C en

programmed

copied

modified

Figure 5-7 Simplified Data Array for Project Tracking

The checklist that we completed for Data Spec A and the examples that follow apply equally
to physical source lines and logical source statements. We have left the Measurement unit
designations at the top of the forms blank so that you can state your own preferences. When
we have automated counters that can identify both physical lines and logical statements, we
will probably elect to use both measures—the additional costs will not be high.

5.3.2. Specifying data for project analysis

Our second example addresses project analysis. It asks for data that we can use to improve
our estimation and planning for future products. We would not normally collect this data
while development is in progress. Instead, we would use this specification at the end of the
project to ensure that we get the data that we need for calibrating cost models and for sizing
future projects. An outline of this data specification is shown verbally below and
schematically in Figure 5-8. Figure 5-9 presents a checklist that makes the measurement
requirements specific and relates them to the rules that apply to other attributes.

Data Specification for Project Analysis (An Example)
For each source language, measure and record these values:
• Total lines (or statements)
• A two-dimensional array showing the number of lines (statements)

- in each statement type
- for each production class

78 CMU/SEI-92-TR-20

CO
CD CO

C CO C CD
CD W

JD C
CO

CD CD
o ^
CO =

CO CD ?^ > •J—' O CD

3 E 2

co
m

p
di

re
ct

i C C
CD g co 2

xe
c

ta
te

CC
a

E o
E.i= m

en
t

1S
O

U

CD CO CD O CD
"D o si E;f o $

o

programmed

generated

converted

copied

modified

removed

Figure 5-8 Example Data Array for Project Analysis

Organizations just starting to use formal definitions to capture this kind of information may
want to begin with a somewhat simpler array. For example, if your tools do not yet support
capturing this information automatically, you may want to consider deleting the request for
counts of removed statements under the How produced attribute. You may also want to
omit the columns for classifying and counting comments.

If your counting tools are automated and if they are capable of distinguishing among different
statement types, you may want to consider adding development status to these data
requirements and collecting the data periodically during development. The additional costs
for periodic measurement (compared to Data Spec A) will not be great, although database
storage requirements will increase. Your real difficulties will come in summarizing and
presenting the data in ways that people can read. But at least you will have the data should
you want it for addressing special needs. For example, in Ada developments, significant
amounts of nonexecutable code can be generated during design via package specifications
and compilable design languages. Periodic reporting of Statement type versus How
produced would give insight into the transition of these efforts from design into the
implementation of executable code.

CMU/SEI-92-TR-20 79

Definition Checklist for Source Statement Counts

Definition name: Data Spec B: Project Analysis Example Date:
(end-of-project data used to improve future estimates) Originator:

8/7/92
SEI

Measurement unit: Physical source lines
Logical source statements a

Statement type Definition Data array
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

2d Includes Excludes

1 •

2 •
3 •

4 •
5 •
6 •
7 •
8 •

How produced Definition | | Data array
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

• Includes Excludes
•
•
•
•
•
•

Origin Definition !• | Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

•
•
•
•

•
•

•
•
•
•

Usage Definition [•J Data array
1 In or as part of the primary product
2 External to or in support of the primary product
3

U Includes Excludes
•

•

Figure 5-9 Data Spec B (Project Analysis)

80 CMU/SEI-92-TR-20

Definition name: Data Spec B: Project Analysis Example
(end-of-project data used to improve future estimates)

Delivery Definition [• | Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes
•:•:•:•:•:•:•:•:•:•:•:•:•:•:

•
•

•
•

Functionality Definition [• | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•:•:•:•:•:•:•:•:•:-:•:•:•:•:]
•

•

Replications Definition [• | Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition !• I Data array
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

•
•
•
•
•
•
•

•

Language Definition Data array !• |
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

•

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 5-9 Data Spec B (Project Analysis, Page 2)

CMU/SEI-92-TR-20 81

5.3.3. Specifying data for reuse measurement

The third example asks for data elements that will help us quantify and interpret software
reuse. These same data elements can also be used to help us compute and interpret
derived measures of productivity and quality. The measurement requirements for the
example are outlined below. Figure 5-10 shows a checklist that makes these requirements
specific and relates them to the rules that apply to other attributes.

Data Specification for Reuse Measurement (An Example)
For each source language, measure and record these values:
• Total lines (or statements)
• A two-dimensional array showing the number of lines (statements)

- in each production class
- for each origin

Collecting data for Data Spec C is likely to require more effort and more configuration
management support than in the previous examples. Tracing origins of completed
statements is inherently difficult. It almost always requires tagging each physical line to
indicate its origin or separately passing code from each origin through a statement counter.
Except in fairly simple cases, you may want to defer tracing origins of statements until you
have tools and automated practices in place to support collecting this data.

82 CMU/SEI-92-TR-20

Definition Checklist for Source Statement Counts

Definition name: Data Spec C: Reuse Measurement
 Example

Date: 8/7/92
Originator: SEI

Measurement unit: Physical source lines
Logical source statements

Statement type Definition | • | Data array
When a line or statement contains more man one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

_J Includes Excludes

1 •

2 •
3 •

4 •
5 •
6 •
7 •
8 •

How produced Definition | | Data array
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

• Includes Excludes
•
•
•
•
•
•

Origin Definition Data array [•]
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

•
•
•
•

•
•

•
•
•
•

Usage Definition [• | Data array
1 In or as part of the primary product
2 External to or in support of the primary product
3

u Includes Excludes
•

•

Figure 5-10 Data Spec C (Reuse Measurement)

CMU/SEI-92-TR-20 83

Definition name: Data Spec C: Reuse Measurement
Example

Delivery Definition !• | Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable torm, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
':7:': " "•

•

• "'"
•

Functionality Definition [• | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
.......

•

Replications Definition [• | Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition !•! Data array
Each statement has one and only one status,
usually that of Its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

•
•
•
•
•
•
•

•

Language Definition Data array [• |
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

•

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 5-10 Data Spec C (Reuse Measurement, Page 2)

84 CMU/SEI-92-TR-20

5.3.4. Combining data specifications

Different data specifications are not necessarily mutually exclusive. In many instances, they
can be combined. Figure 5-11 is an example, showing the combination of Data Specs B and
C. Combinations like these have the benefit of reducing the number of sheets of paper that
data collectors must work with.

There are costs, however, as well as operational hurdles that must be overcome when
combining data specifications. One cost is that database requirements are increased (in the
B+C case) from the maintenance of two arrays, one 5x9 and the other 5x5, to the
maintenance of a three-dimensional array that has 5x5x9 elements. This is a factor of three
increase in data storage. Another cost is that separate passes through the counter may have
to be made to get counts for attribute classes such as Origins that can be separated only by
manual means.

The operational hurdle is that organizations may experience difficulty transmitting highly
multidimensional measurement results from the point of collection to the point of database
entry. Until you have automated tools to aid in this process, you will probably be wise to limit
data recording to one or two dimensions (attributes) at a time for each source language.
Note, however, that there is no limit to the number of one- and two-dimensional data
specifications you can use.

Figure 5-11 shows how data specifications can be combined. Combining data specifications
may be useful when organizations have automated tools to support measurement, recording,
and database entry.

CMU/SEI-92-TR-20 85

Definition Checklist for Source Statement Counts

Definition name: Data Spec B+C: Project Analysis
 (combined specifications)

Date:

Originator:

8/7/92
SEI

Measurement unit: Physical source lines
Logical source statements a

Statement type Definition Data array
When a line or statement contains more man one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

• Includes Excludes

1 •
•''WWWT''t:.

2
_,.,

• •: • •

3 •

4 •
5 •
6 •
7 •
8 •

How produced Definition | | Data array
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

• Includes Excludes
•
•
•
•
•
•

Origin Definition Data array [• |
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

•
;..; :

•
•
•

•
•

•
•
•
•

Usage Definition \%/_\ Data array
1 In or as part of the primary product
2 External to or in support of the primary product
3

u Includes Excludes
•

•

Figure 5-11 Data Spec B+C (Combined Specifications)

86 CMU/SEI-92-TR-20

Definition name: Data SpecB+C: Project Analysis
(combined specifications)

Delivery Definition !• | Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

 •
•

""""•""
•

Functionality Definition !• | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
•

Replications Definition [• | Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition !• I Data array
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

.: ' :.:: : '.
•
•
•
•
•
•
•

•

Language Definition Data array !• |
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

•

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 5-11 Data Spec B+C (Combined Specifications, Page 2)

CMU/SEI-92-TR-20 87

5.3.5. Counting dead code

In practice, we would augment our definitions with a specification for one additional data
element—a request to measure and report the total amount of dead code included in the
overall measure for size. This would help us assess the reliability of the size counts we
receive, and it would help us evaluate the effectiveness and progress of our dead code
removal practices.

We believe that the best way to focus attention on actions needed to eliminate potentially
dangerous contaminations in delivered products is to attempt to measure the contaminating
elements. Since dead code is an excluded element in our definition for total size and since
we see little benefit in mapping its characteristics in detailed arrays against other attributes,
we would make this request as a supplement to our primary size definition. We would
convey this request by means of a checklist that is identical to our definition checklist for total
size, except that the rules for the Functionality attribute would be as shown in Figure 5-12.
We would also ask that the steps taken to identify and exclude inoperative code be reported
in a supplemental rules form. We will illustrate such a form in Figure 7-3 of Chapter 7.

Functionality Definition Data array | • |
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
;

•

Figure 5-12 Dead Code Data Spec

5.3.6. Relaxing the rule of mutual exclusivity

In Section 3-2, we discussed the reasons for keeping the values within attributes mutually
exclusive. There is one useful exception where the guidelines for mutual exclusivity can be
safely ignored and values can be permitted to overiap without danger of miscounting. This
occurs when the values are used not to define elements included in or excluded from a
measure, but are used only as part of a data specification that identifies individual data
elements to be collected and reported separately.

To give just one example, suppose you want to obtain counts for textual comments,
irrespective of whether you include comments in your overall measure for source code size.
One easy way to specify this is to insert the phrase "Textual comments: #6 + #7, even if on
lines with other statements" on one of the blank lines under the Statement type attribute.
Then, by checking the Data array box, you can indicate that you want counts for these
comments to be collected along with your other counts. If only simple counts (counts not
arrayed with other data) are needed, the best way to get them is to use a fresh checklist to
create a separate data specification.

88 CMU/SEI-92-TR-20

Figure 5-13 is an example of how you can modify the checklist to get the counts you want.
Here counts for textual comments are requested in addition to counts for executable
statements, declarations, and compiler directives. If the counts for the other statement types
are not needed, you can move their checkmarks to the Excludes column.

Statement type Definition Data array | • Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11 Textual comments: #6 + #7, even if on lines with other
12 statements

1

....

•

2 •
3 •

4 •
5 •
6 •
7 •
8 •

— S

Figure 5-13 Specification for Counts of Textual Comments

5.3.7. Asking for lower level details—subsets of attribute values

Some users of measurement results may want reports for attribute values that are subsets of
those in the original checklist. For example, one reviewer has observed that if XYZ is an
attribute value that is already in the checklist, he might like to get data on a subset of this
group—say XYZ.abc—and that it should not cause great problems if he were to add such an
element to the checklist. We agree, but suggest that one simple step can avoid possible
confusion. Merely replace the XYZ element with two elements—XYZ.abc and XYZ.other—so
that all outcomes are covered and the list remains mutually exclusive. This subsetting tactic
is, in effect, one we have used already when listing values for comment types and prior work
origins in the definition checklist

Figure 5-14 is an example of how we might use the definition checklist to get counts for
subsets of a data element. This example splits the statement type Comments on their own
lines into two subtypes: Comments on their own lines (revision histories) and Comments on
their own lines (other). We would use a specification like this to get separate counts for the
number of source lines used to record revision histories.

CMU/SEI-92-TR-20 89

Definition Checklist for Source Statement Counts

Definition name: Data Spec for Comment Subtypes Date: 9/1/92
Originator: J. Smith

Measurement unit: Physical source lines 1 •
Logical source statements

Statement type Definition Data array | • | Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments

7 On lines with source code (count these separately)
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11 Comments on their own lines (revision histories)
12 Comments on their own lines (othei

1 •
\^]- :'-;:;' •

2
wmm

3 •

4
— •
6 •
7 •
8 •
4 •
5 •

Figure 5-14 Getting Data on Subsets of Attribute Values

"5.4. Other Definitions and Data Specifications

The examples in this chapter have been predominantly ones we would use for cost
estimating and project tracking. When you have other reasons for measuring size, you may
want alternative definitions or data specifications. For example, if you want to measure
statement reuse so that you can evaluate trends in using generics, macros, or include files,
you may want to include copies of inserted, instantiated, and expanded code in your
statement counts. Similarly, if you want to examine processes that develop nondelivered
code, you may want to count nondelivered statements. All these situations can be described
with the definition checklist.

Our advice in situations where alternative definitions seem to be needed is to determine first
whether you can get the information you want by using a data specification rather than by
constructing a new definition. In most cases, you can. The advantage of data specifications
is that they keep definitions of size from proliferating. If you can get what you need with a
data specification, you can maintain a common definition of size that can be used across
many projects. Then trends can be examined, and lessons learned in one place can be
applied in others.

90 CMU/SEI-92-TR-20

5.5. Other Measures

The examples in this chapter have been exclusively source statement measures. Appendix
C discusses our reasons for narrowing our scope to these measures. The fact that we have
selected two particular measures with which to illustrate our framework for defining software
size does not imply that other measures may not be equally good or even better. Given time,
we would like to apply our checklist-based methods to measures like source units (CSUs),
requirements, pages of design specification, noncommentary source words, and possibly
even function points or feature points. These measures and many others are mentioned in
Appendix B, where we list well over 100 possible measures that could be used to describe
the size of software products and activities.

CMU7SEI-92-TR-20 91

6. Defining the Counting Unit

We now turn our attention to the question of how to recognize a source statement when we
see one. Whenever either logical source statements or physical source lines are counted,
rules must be established for determining exactly when statements begin and end. These
rules must be complete and noncontradictory, and they must be clearly and explicitly stated.
In particular, they must be precise to the point that they can be programmed into automated
line and statement counters without further interpretation.

6.1. Statement Delimiters

Statement delimiters are the symbols and rules that identify when source statements begin
and end. Explicit and unambiguous specification of all statement delimiters and delimiting
rules is required if meaningful size measurements are to be obtained. Specifications for
delimiters and delimiting rules are not complete until all special cases and exceptions are
accounted for.

6.2. Logical Source Statements

Counts of logical source statements (or instructions) are attempts to measure the size of
software in ways that are independent of the physical form in which the instructions appear.
The thesis behind counting logical source statements is that the number of logical
instructions is in some sense proportional to the amount of logic in the code. A second thesis
(or hypothesis) is that effort and, hence, cost are proportional to the total logic that must be
specified, designed, coded, and tested.

One advantage of counts of logical source statements is that they are generally less depen-
dent on programming style than counts of physical source statements. In particular, logical
counts are usually unaffected by passing source code through a source code formatter or
pretty printer. Another advantage is that logical source statements are independent of
naming practices—lengthy (some call them descriptive) names do not inflate statement
counts.

One disadvantage of counts of logical statements is that interpretations are strongly
dependent on the rules used for deciding what constitutes a statement and for identifying
statement delimiters. This has made it difficult to ensure that consistent rules are applied
across organizations. Another disadvantage is that forms and classes of statements and
delimiters vary from language to language. This means that even with consistent definitions
for inclusion and exclusion, counts of logical source statements may not be comparable
across different source languages.

CMU/SEI-92-TR-20 93

When delimiters are not specified explicitly, those who count statements can make up their
own rules, and users of the results never know for sure what the measurements mean.
Specifying delimiters for logical source statements requires painstaking and sometimes
arduous work. For example:

• Rules for recognizing statement delimiters must address all special cases. Examples
where rules must be explicit include identifying embedded statements, recognizing
and evaluating continuation statements, identifying embedded literals and embedded
comments, and responding to situations where more than one type of delimiter can
be used.

• Many languages have more than one type of delimiter. For instance, Ada, C, C++,
Pascal, and Modula-2 use different delimiters for comments than they do for
declarations or executable statements.

• Not all delimiters are statement delimiters. The Ada language reference manual, for
example, lists 26 symbols as delimiters [Ada 83]. Ada also uses other symbols not
on the list (double dash and end-of-line) to delimit its comments.

• Statement delimiters are difficult to specify unambiguously. For example, "count
terminal semicolons" expresses a concept but leaves numerous details open for
interpretation. Rules like this are unsatisfactory as counting specifications. Since all
semicolons look alike, responsibility is effectively dodged by the rule makers, leaving
discretion to local organizations to choose among alternatives for interpreting and
implementing the meaning of "terminal." This leads to the collection of statement
counts of uncertain content and to untrustworthy comparability among different
organizations who report size measures.

• Some languages draw little distinction between expressions and statements. C and
C++ are two examples. These languages present particularly thorny cases when
defining delimiters for counting logical source statements. Where other languages
permit only expressions, C and C++ programmers may, if they wish, use either
statements or expressions, often to nearly the same effect. You must give careful
thought to the rules for identifying delimiters and statements when your objective is to
make logical counts for C and C++ programs comparable to logical counts for other
languages.

• Similarities between expressions and logical statements raise other questions. For
example, should expressions such as those in calling arguments or logical tests be
treated as logical statements? Languages such as Pascal, C, and C++ permit
extensive formatting and computational instructions to be buried as expressions in
write or printf statements. Should these instructions be counted as statements? If
so, what are their delimiters? FORTRAN'S WRITE statements can also contain
expressions (instructions?) that produce significant amounts of computation at run
time. These are all issues that have to be settled before definitions and specifications
for logical source statement delimiters can be considered complete.

• Runtime debuggers often identify logical expressions used in conditional tests as
executable statements and include them in their sequential statement count. This
helps when single stepping is used to locate programming errors. If organizations

94 CMU/SEI-92-TR-20

want to follow similar rules when creating a definition, they must state their intentions
and specify the delimiters (or other rules) that they will use to identify and count these
expressions.

• Those who count logical source statements by means of separators such as
semicolons must specify the rules for addressing the special cases of the first and
last statements in bodies and blocks of code. For example, the final statement within
a Pascal block requires no punctuation, and the final statement in a program or unit
ends with a period, not a semicolon. Also, in versions of Pascal that have separately
compilable units, executable statements do not occur until an implementation
statement is encountered. Other languages can have similar characteristics.

• In some languages that use statement separators rather than statement terminators
(e.g., Pascal), there are many instances in which the separator is optional. Here
simplistic rules such as "count semicolons" would leave the definition of logical
statement to the whims of individual programmers. This, in the absence of strict
coding standards, could destroy all hopes of comparability, even across modules
within a common project.

• Specifications for logical statement delimiters must deal with all cases in which
symbols used as delimiters can be used for other purposes as well. For example,
semicolons in some languages can be used not only to terminate or separate
statements, but also to terminate or separate expressions, function arguments, and
data list elements. In addition, delimiting symbols can appear as literals in text strings
and comments without performing delimiting roles.

• Counting philosophies can be influenced and complicated by the fact that many
languages reserve the word statement to describe just executable statements. Ada,
Pascal, C, C++, and Modula-2 are examples. In these languages, declarations,
compiler directives, and comments are not classified as statements, they are merely
declarations, compiler directives, and comments.

• Some languages (Pascal, C, C++, and Modula-2, for example) have special symbols
for the beginnings and endings of comments that permit comments to flow over
several physical lines. In these languages, a single pair of symbols may bracket
several sentences that people may perceive as statements. Other languages (Ada,
FORTRAN, and assembly, for example) terminate comments at the first end-of-line
encountered. In these cases, each comment may capture but a fraction of the textual
statements that programmers make. It is not at all clear that a rational system exists
to resolve these differences, other than resorting to counts of physical lines when the
volume of comments is of interest.

People can easily disagree on even simple examples of logical source counts. For instance,
how many logical statements do you think should be counted in this code fragment?

if A then B else C endif;

CMU/SEI-92-TR-20 95

We have posed this question to several audiences and have received a variety of responses.
Figure 6-1 shows a summary from two audiences we polled. Clearly, people have differing
views as to what they perceive logical source statements to be.

50

40 •

Number 30 -
of

Votes
20 i

Number of Logical Source Statements

Figure 6-1 Poll Results—Logical Source Statements

Here is a slightly more complex example where people can disagree:

How would you prefer to count and classify the statements in this short C program that
computes and prints a table for converting degrees Fahrenheit to degrees Celsius [Kemighan
88]?

#define LOWER 0
#define UPPER 300
#define STEP 20

/* lower limit of table */
/* upper limit */
/* step size 7

main() /* print a Fahrenheit-Celsius conversion table 7

{
int fahr;
for(fahr=LOWER; fahr<=UPPER; fahr=fahr+STEP)

printf("%4d %6.1f\n", fahr, (5.0/9.0)*(fahr-32));

Will everyone agree with your results? How many different delimiters did you use as you
were counting?

96 CMU7SEI-92-TR-20

With these points settled, you may find it interesting to test your methods on this more exotic
C language fragment:

for(;P("\n"),R--;PCI"))for(e=C;e--;P("_,'+(*u++/8)%2))P("r+(*u/4)%2);

At this point, we hope we have convinced you that there is more to counting logical source
statements than many people realize. We also hope that we have not discouraged you from
trying, as there certainly are benefits. We merely wish to point out that it is because logical
statements are so difficult to define unambiguously that those who use them have a special
responsibility to state explicitly and exactly the full set of rules they use to account for all
possible events. Without full disclosure of all rules and delimiters, we simply cannot tell what
information their measures contain.

For logical statement counts to be meaningful, users must state explicitly and completely the
rules they employ. These requirements deserve special attention:

• Identifying the beginnings and endings of each statement type.

• Distinguishing among different statement types.

• Identifying and counting embedded statements, such as when one statement is used
within or as an argument to another or is inserted or omitted between begin/end
markers.

• Dealing with special situations, such as expression statements, modified comments,
continuation lines, and the first or last statements in bodies or blocks of code.

6.3. Physical Source Lines

Physical source statements are source lines of code: one physical line equals one statement.
The delimiter—or, more precisely, the terminator—for physical source statements is usually a
special character or character pair such as newline or carriage return—line feed. When
dealing with source code files, the particular delimiter used depends on the operating system.
It is not a characteristic of the language.

Although how-to-count issues for physical source statements are easily settled, what-to-
count issues bring out widely divergent views. As one example, we have shown the short C
language program on the previous page to several audiences, and posed the question:
"What do you think the SLOC count (physical source lines) for this program should be?"
Responses varied even more widely than we anticipated, especially since one of our
audiences was the COCOMO Users' Group, an assembly of practitioners who all use the
same cost model and presumably the same definition for software size. Figure 6-2 shows
the distribution of responses from two of our audiences. It includes the votes of the
COCOMO people.

CMU/SEI-92-TR-20 97

30

Number
of

Votes

20

mm
2 3 4 5 6 7 8
Number of Physical Lines (SLOC)

Figure 6-2 Poll Results—Physical Source Lines

Clearly, different perceptions exist with physical source lines just as with counts of logical
source statements. There is an important difference though—these variations stem largely
from different views as to what should be counted, not from any fundamental confusion or
lack of definition for the counting unit.

Although what-to-count issues can be dealt with effectively with a simple checklist, physical
source statements (i.e., lines of code) can be difficult to classify when more than one type of
logical statement is on a physical line. (This was not a problem in the Fahrenheit-to-Celsius
example.) Whenever programming languages permit multiple logical statements to exist on
a single physical line, explicit rules for classifying lines according to statement types must be
defined. The most straightforward way to do this seems to be through use of a precedence
system. For this reason, we have included provisions for assigning classification
precedences within the section of the checklist that addresses the Statement type attribute.
At the risk of being overly directive, we have even gone so far as to impose our view of a
precedence ordering. We hope that this makes use of the precedence facility more
apparent.

Measures of physical source statements are most consistently obtained and statement types
are most easily classified when source language modules are processed into standardized
formats before counting. Pretty printers, formatters, and translators are tools that can
provide these services. Standardized formatting with automated tools is a practice we
recommend for all users of SLOC measures. Some pretty printers, however, have been

98 CMU/SEI-92-TR-20

programmed to introduce physical lines that organizations may not want to include in size
counts. There is an argument in these cases for having a list of words that are treated as
blank characters when counting nonblank lines. If this is done, then this list of words should
be attached to the supplemental rules form.

Some people believe that counts of physical source statements can be misleadingly inflated
through the use of lengthy names for variables and procedures. Others believe that the
issue is clarity, not length; that descriptive names that add information make code more
readable and easier to maintain; that this adds value; and that this gives reason for preferring
physical counting over logical counting. These differing views can spark heated debate. Our
conclusion is that the disagreements themselves give reason for measuring source code size
in both ways. In fact, if measurements were available under consistent ground rules for the
two different programming styles, then relating the results to development and maintenance
costs might shed light on this and similar debates that in the past have been dominated more
by emotion than evidence.

6.4. Physical and Logical Measures are Different Measures

The following Pascal fragment from a binary search tree provides some examples.

repeat
if tree = nil

then
finished := true

else
with treet do

if key < data
then

tree := left
else if key > data

then
tree := right

else
finished := true

until finished;

How many logical statements are there? We think there are nine: one repeat, three its, one
with, and four assignments. Notice that in arriving at this count, we have implicitly treated
then and else as keywords that function as statement delimiters. Since there is no
requirement in Pascal that statements actually be present between two such delimiters (or
between begin...end pairs, for that matter), you can begin to see some of the issues that
those who count logical source statements must face when called upon to make their
counting rules explicit and complete.

CMU7SEI-92-TR-20 99

How many physical lines are there in the preceding example? Brute force would lead us to
15. But the code fragment could just as easily have been written this way:

repeat
if tree = nil

then finished := true
else with treet do

if key < data
then tree := left
else if key > data

then tree := right
else finished := true

until finished;

Now there are but 10 physical lines. Note that the number of logical statements is
unchanged. If your goal is to seek some sort of comparability between physical and logical
source code measures, these issues merit attention.

Counts for physical and logical source statements should almost never be combined. Adding
the two measures, except under very special conditions, almost guarantees meaningless
results. The only instance that we know of where adding physical and logical statements has
been advocated is in the recommendations for statement counting proposed for Ada
COCOMO [Boehm 89]. Even here, the proposals follow very explicit rules, counting only
physical lines for package specifications and only logical statements for package bodies.
These proposals are motivated by the belief that logical statement counts based on terminal
semicolons do not adequately account for the efforts required to produce many package
specifications, and that some correction is needed to adequately relate the effects of the
sizes of package specifications to development costs. They are no doubt motivated also by
the fact that this method of counting maintains consistency with Ada's use of the term
statement to refer only to executable statements.

To prevent confusion in reporting measures of size and in storing results in databases,
counts of physical and logical source statements should always be maintained and reported
separately. Anyone having an urge to combine the two kinds of measures can always do so
after extracting the information from the database.

Combining two dissimilar measures is not prohibited, as long as those who do so recognize
that combinations constitute models, not measures. The Ada COCOMO proposals are our
view of one simple but practical model. This model says that the costs for one physical line
in a package specification are approximately the same as for one logical statement in a
package body. In time, and with consistent definitions in place, we would hope to be able to
determine whether such equally weighted combinations of physical and logical counts
provide the most effective inputs for Ada COCOMO, or whether some other weighting or
model is even more effective.

100 CMU/SEI-92-TR-20

6.5. Conclusion and Recommendation

The discussions here and in the preceding chapters lead us to conclude that physical source
lines are both simpler to count and less subject to unstated assumptions than logical source
statements. This will remain true until clear and exhaustive rules for identifying logical
statement delimiters and statement types have been specified—a painstaking, language-
dependent exercise. For these reasons, we recommend that organizations focus first on
counts of physical source statements. Counts of logical source statements can be added
later, if desired—but only after you have completed the requisite homework.

CMU7SEI-92-TR-20 101

7. Reporting Other Rules and Practices—
The Supplemental Forms

We have constructed three supplementary rules forms to provide structures for recording and
describing language-dependent counting practices that cannot be dealt with adequately with
a checklist. The first form is used to complete the definition of physical source statement
counts. The second is used to complete the definition of rules used for identifying logical
source statements. The third is used with both physical and logical source statements to
explain the rules and practices used to identify dead code.

The kinds of rules these forms address include:

• Language-dependent rules for identifying the beginnings and endings of logical
source statements.

• Language-dependent rules for identifying and distinguishing among different
statement types.

• Environment-dependent tools and practices used to ensure that the dead code we do
not want in size measures actually gets excluded.

Exact and explicit rules in the first two cases are especially important to those who specify,
design, operate, or use results from automated source code counters. The third case is
more an issue of verification or enforcement. Users of size data need to be able to judge for
themselves whether adequate steps have been taken to ensure that reported counts are not
inflated with unused, unproductive, and untested code. Assurances that dead code is
excluded are unlikely to be trustworthy if the practices used for exclusion cannot be
explained.

Figures 7-1, 7-2, and 7-3 show the supplemental forms we have created. Every definition
checklist, when completed, should be accompanied by a completed rules form for each
language to which the definition applies. Every set of measurement reports, when submitted,
should also be accompanied by a completed form that explains the practices used to exclude
dead code from reported results.

CMU/SEI-92-TR-20 103

7.1. Physical Source Lines

Rules for Counting Physical Source Lines
For each source language to which the definition applies, provide the following information:

Language name:

Note: This information is required only for statement types that are excluded from counts or for
which individual counts are recorded.

Executable lines: List the rules used to identify
executable lines. If special rules are used for
constructs such as block statements, embed-
ded statements, empty statements, or embed-
ded comments, describe them.

Declarations: List the rules used to identify
declaration lines. Explain how declarations are
distinguished from executable statements.

Compiler directives: List the rules used to
identify compiler directives.

Comments: List the rules used to identify
beginnings and endings of comments.

Modified comments: If separate counts are
made for modified lines, list the rules used to
keep modifications to comments on lines with
other code from being classified as modified
statements of higher precedence.

Special rules: List any special rules that are
used to classify the first or last statements of
any sections of code.

Figure 7-1 Rules Form—Counting Physical Source Lines

104 CMU/SEI-92-TR-20

7.2. Logical Source Statements

Rules for Counting Logical Source Statements
For each source language to which this definition applies, provide the following information:

Language name:

Executable statements: List all rules and
delimiters used to identify beginnings and
endings of executable statements. If special
rules are used for constructs such as block
statements, embedded statements, empty
statements, expression statements, or
subprogram arguments, describe them.

Declarations: List the rules and delimiters used
to identify beginnings and endings of declara-
tions. Explain how declarations are distin-
guished from executable statements.

Compiler directives: List the rules and delim-
iters used to identify beginnings and endings of
compiler directives.

Comments: If comments are counted, list the
rules used to identify beginnings and endings
of comment statements. Explain how, if at all,
comment statements differ from physical
source lines.

Special rules: List any special rules or delim-
iters that are used to identify the first or last
statements of any sections of code.

Exclusions: List all keywords and symbols that,
although set off by statement delimiters, are
not counted as logical source statements.

Figure 7-2 Rules Form—Counting Logical Source Statements

CMU/SEI-92-TR-20 105

7.3. Dead Code

Practices Used to Identify Inoperative Elements
List or explain the methods or rules used to identify:
Intentionally bypassed statements and declarations

Unintentionally included dead code
A. Unreachable, bypassed, or unreferenced elements (declarations, statements, or data stores)

within modules:

B. Unused, unreferenced, or unaccessed modules or include files in code libraries:

C. Unused modules, procedures, or functions, linked into delivered products:

Figure 7-3 Practices Used to Identify Inoperative Elements

106 CMU/SEI-92-TR-20

8. Recording Measurement Results

Measurements, once made, must be entered into a database. Often the people who enter
the results are not those who collect the original data. The results need somehow to get from
those who collect them to those who put them into databases. To assist this process, we
have constructed examples of the kinds of forms that you can use to record and transmit
results of source statement counts (Figures 8-1 through 8-4). These examples are
consistent with the definitions and data specifications we illustrated in Chapter 5, and they
include information that tracks the data back to the definitions and to the entities measured.

Forms are very constraining instruments. Because they have flat surfaces, they are limited
to displaying two dimensions at a time. This means that the only way we can use forms to
record interactions of more than two dimensions is to hold all but two dimensions fixed,
record the two dimensions of primary interest in an array, and then use additional forms or
repetitions of the array to record the cases where other factors take on other values.

Each attribute on our checklist is a dimension. If paper is our medium, recording values for
several attributes at once is cumbersome. There is, however, some good news. Most
software modules will have relatively uniform characteristics in some of the dimensions. For
example, either the entire module will be delivered or it will not. Either the entire module will
be used within the primary product or it will not. Either the module will be master source
code or it will be something else entirely. And often modules will be entirely of one language
or of one origin. They will almost always, if small enough, have just one development status.

Our strategy in designing recording forms is to take advantage of these observations. The
assumptions we make are that source code gets fed to source code counters in chunks, and
that these chunks can be selected so that many characteristics (attributes) will have uniform
values for the entire chunk. When these assumptions do not hold, we supplement our
methods with special procedures. These include techniques such as dividing modules into
smaller chunks, making separate passes through source statement counters for each
programming language, and tagging individual statements or lines with codes (comments) to
indicate different origins. We then use separate forms to record the results for each chunk,
pass, or tagged set of statements.

In principle, one recording form should be used for each software entity measured. Thus,
several or even many recording forms may be used for a given project or product. The
primary purpose of the recording form is to get data entered correctly into the database.

We present these example forms not to say, "This is the way," but merely to suggest the
kinds of forms that can be helpful in ensuring that details requested by data specifications get
recorded and entered correctly into the databases from which measurement reports will be
generated. We encourage organizations to replace or alter these forms to meet their own
needs. Copying is permitted, and Appendix E includes masters suitable for reproduction.

CMU/SEI-92-TR-20 107

8.1. Example 1—Development Planning and Tracking

We have designed our first recording form (Figure 8-1) to support organizations that wish to
use the data specification shown in Figure 5-4 (Data Spec A). This product tracking data
specification has relatively few reporting requirements. We use our form to record and
transmit low-level data. The form includes blocks to record the Delivery and Usage
attributes because it costs little to do so and because recording values for these attributes
may help to avoid misinterpretations. The form omits the Origin attribute since there is no
need in Data Spec A to require all the code in each pass through a code counter to have the
same origin.

Source Code Size Recording Form

[J Physical source lines Q Logical source statements

Product name:

Module name:

Definition name: D ata Spec A (project tracking)

stimated By:

i used):

Version:

Version:

Dated:

Max. line

8/7/92

Source language:

U Measured U E.

He

C

ngth: characters

•ate:

How measured (list tools

Inoperative code: U Included U Excluded, unless functional U Excluded U Don't know

If excluded, how identified:

Measurement results: How Produced

Totals (excluding comments Programmed Generated Converted Copied Modified Removed

& blanks) I

Delivery
Delivered as source

Delivered as executable

Not delivered, controlled

Not delivered,

not controlled

•
•
•
a

Usage
In primary product •

External to product Q

Development status
Estimated or planned •

Designed _J

Coded Q

Unit tests completed •

Integrated into CSCs •

Test readiness reviewed Q

CSCI tests completed •

Module size System tests completed Q

Figure 8-1 Recording Form for Data Spec A

108 CMU/SEI-92-TR-20

8.2. Example 2—Planning and Estimating Future Products

We designed our second recording form (Figure 8-2) to support organizations that collect
details such as Data Spec B (Figure 5-9) requests.

Source Code Size Recording Form

Q Physical source lines Q Logical source statements

Product name:

Module name:

Definition name: Data Spec B (project analysis)

Source language:

Version:

Version:

Dated: 8/7/92

U Measured U Estimated By:

How measured (list tools used):

Max. line length:

Date:

characters

Inoperative code: LI Included U Excluded, unless functional LI Excluded LI Don't know

If excluded, how identified:

Measurement results: How Prod"ced

Statement type Programmed Generated Converted Copied Modified Removed

Executable

Declaration

Compiler directive

Comment on own line

Comment on code line

Delivery Usage Development status

Delivered as source Q In primary product • Estimated or planned •
Delivered as executable Q External to product • Designed •
Not delivered, controlled Q Coded •
Not delivered, Unit tests completed •

not controlled • Integrated into CSCs •
Test readiness reviewed •
CSCI tests completed

System tests completed

•
Module size •

Figure 8-2 Recording Form for Data Spec B

CMU/SEI-92-TR-20 109

8.3. Example 3—Reuse Tracking, Productivity Analysis, and Quality
Normalization

The recording form in Figure 8-3 supports data specifications such as those illustrated in
Figure 7-8 (Data Spec C).

110 CMU/SEI-92-TR-20

Source Code Size Recording Form

Qj Physical source lines Q| Logical source statements

Product name:

Module name:

Definition name: Data Spec C (reuse measurement)

Source language:

Version:

Version:

Dated: 8/7/92

LI Measured U Estimated By:

How measured (list tools used):

Max. line length:

Date:

characters

Inoperative code: U Included U Excluded, unless functional LI Excluded LI Don't know

If excluded, how identified:

Measurement results (executable statements

plus declarations plus compiler directives): How Produced

Origin

New: no prior existence

Previous version, build, or release

Commercial, off-the-shelf software

Government furnished software

Another product

Local or modified lang. library or O/S

Other commercial library

Reuse library

Other component or library

3rogrammed Generated Converted Copied Modified Removed

Delivery Usage Development status

Delivered as source • In primary product Q Estimated or planned •
Delivered as executable • External to product CJ Designed •
Not delivered, controlled • Coded •
Not delivered, Unit tests completed •

not controlled • Integrated into CSCs

Test readiness reviewed

•
a

noncomment, nonblank statements

CSCI tests completed

System tests completed

•
Module size a

Figure 8-3 Recording Form for Data Spec C

CMU7SEI-92-TR-20 111

8.4. Example 4—Support for Alternative Definitions and Recording
Needs

Figure 8-4 shows a more detailed recording form that includes all attributes and values on
the checklist except for the two Origin elements for unmodified vendor-supplied support soft-
ware. You may be able to use this form to record interactions among Statement types and
How produced in some situations where users ask for individual reports more detailed than
those Chapter 5 illustrates. In other situations, you may need to design more specialized
forms.

Standardized forms for reporting aggregated measures of multiple software units are even
more difficult to devise due to the number of possible dimensions (attributes) that can be
present at one time, each with multiple values. If you need data on the intersections of
attributes other than Statement type, How produced, or Origin, it is probably best to
construct individual forms that account for the multidimensional aspects of the attributes of
interest. Chapter 9 discusses some ideas and examples for constructing forms for
aggregating measurement results.

112 CMU/SEI-92-TR-20

Source Code Size Recording Form

|_J Physical source lines

Product name:

Module name:

Definition name:

Source language:

U Measured

[j Logical source statements

Version:

Version:

Dated:

U Estimated

How measured (list tools used):

By:

Max. line length:

Date:

characters

Inoperative code: U Included U Excluded, unless functional U Excluded U Don't know

If excluded, how identified:

Measurement results: How Produced
Statement type Programmed Generated Converted Copied Modified Removed

Executable

Declarations

Compiler directives

Comments

on their own lines

on lines with code

banners & spacers

blank comments

Blank lines

Origin

New: no prior existence

Previous version, build, or release

Commercial, off-the-shelf software

Government furnished software

Another product

Vendor-supplied language library

Vendor-supplied O/S (unmodified)

Local or modified lang. library or O/S

Other commercial library

Reuse library

Other component or library

Delivery Development status

Delivered as source • Estimated or planned •
Delivered as executable a Designed a
Not delivered, controllec • Coded •
Not delivered, Unit tests completed •

not controlled • Integrated into CSCs •
Test readiness reviewed •

Usage CSCI tests completed •
In primary product • System tests completed •
External to product •

to loduie size

Figure 8-4 A Generalized Form for Recording Measurements of Source Code Size

CMU/SEI-92-TR-20 113

9. Reporting and Requesting Measurement Results

After measures have been collected, they must be aggregated, summarized, and presented
in ways that can be read and understood by the people who use them. When data is multi-
dimensional, as it is when arrays of data elements are requested, the difficulties in presenting
coherent summaries are greater than they seem at first glance.

The purpose of this chapter is to offer several forms of assistance:

• A reporting form that provides summary (grand) totals for individual elements in the
checklist.

• An example of a form that you can use to summarize the project tracking data
requested in Data Spec A.

• An outline of a process that users of measurement data can use to request the data
they want reported.

• Two examples in which checklists are used to convey user requests for arrayed data.

• A form for requesting individual (marginal) summary reports.

Before presenting this assistance, we issue this very important caution: You can't always get
the total from the sum of the parts! The reason is that intermediate totals may include
statements drawn from code libraries and other modules. If these libraries or modules are
used in separately counted bodies of code, double counting can occur. When computing
total product size, you must always add only the most fundamental units you count;
otherwise, some statements may get counted more than once.

9.1. Summarizing Totals for Individual Attributes

When the patterns in statement attributes are simple, you may be able to use recording
forms like those in Chapter 8 to report summaries of measurement results. But when
multiple values are recorded for several attributes, displays of aggregated results become
complex. You will then need more specialized forms to summarize the data you collect.

The form we present in this section is useful for communicating a quick summary of "the big
picture." It has the advantage that it tracks results directly back to the definition checklist, so
that no associated definition or data specification is needed. The major disadvantage is that
the form cannot show interactions among attributes—only the individual (i.e., marginal) totals
formed by adding across the rows or down the columns of interacting cells. Because of this
limitation, the form is seldom suitable for recording measurement results.

Figure 9-1 shows the kind of picture the first two pages of the data summary form can
provide. Totals can also be reported for any of the individual language constructs on pages 3
though 5 of the checklist. The blank data summary in Appendix E includes these pages,
should you wish to report data on the frequency of use of different language constructs.

CMU/SEI-92-TR-20 115

Data Summary—Source Code Size

Module ID CSCI #3: Radar tracker v.1.0 Date counted: 8/7/92
Language: Ada Reported by: S. Smith

Measured as:
l^l Physical source lines

J Logical statements
Totals

include
Totals

exclude
Individual

totals

Counted
Estimated
Total

53,588
6.750

60,338

Statement type
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

•:•:•:•:•:•:•:•:•:•:•:•:•:]
1 Executable Order of precedence •>
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1 • 33,772

2 • 26,129
3 • 437

4 •
5 •
6 •
7 •
8 •

How produced
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

• 39,188
• 0
• 0
• 18.895
• 2,255

•

Origin
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

• 39.188

• v'"' "d"
• 7,644
• 0
• 11,276

•
•

• 0
• 0
• 2,230
• 0

Usage
1 In or as part of the primary product
2 External to or in support of the primary product

• 60,338
•

3

Figure 9-1 Example Summary Size Report

116 CMU/SEI-92-TR-20

Module 1D CSCI #3; Radar tracker v.1.0 Totals
include

Totals
exclude

Individual
totals Language: Ada

Delivery
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

• 58,108
• 2,230

•
•

Functionality
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

• 60,114

• 224
• unknown

Replications
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

•

• —
•
•

Development status
Each statement has one and only one status,
usually that of Its parent unit.

1 Estimated or planned
2 Designed (estimated)
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

:•:•:•:•:•:•:•:•:•:•:•:•:

•
• 6,750
• 8,374
• 20,648
• 24,566
• 0
• 0
• 0

Language
List each source language on a separate line.

1
2 Job control languages •
3
4 Assembly languages •
5
6 Third generation languages Ada
7

• 60,338

8 Fourth generation languages •
9

10 Microcode •
11

Figure 9-1 Example Summary Size Report, Page 2

CMU/SEI-92-TR-20 117

Although the data summary form bears strong resemblance to the definition checklist, there
are some differences. The most noticeable is the third column on the right side, which
provides a place to report the total counts for individual attribute values. The heading of the
form differs from the definition checklist so that we can identify the software measured, the
measurement date, the programming language, and the name of the individual preparing the
report. Since the data summary form cannot show multidimensional interactions, the
Definition and Data array boxes have been omitted. We have also added summary boxes
at the top of the first page to record the total size and to show how much was estimated and
how much was actually measured. These boxes help clarify summaries of counts made
early in a product's life cycle, before actual code is available for measurement.

We have included a blank data summary form in Appendix E for those who would like a
reproducible copy for local use. Pages 3 through 5 of the form are like those on the definition
checklist, except that they include the third column. These pages permit users to clarify their
counting rules, so that the definition checklist need not be attached. They also provide a
place to summarize counts of individual programming constructs. This information can be
used to track progress in adopting new languages and new software development
paradigms, such as when organizations are just beginning to gain proficiency with Ada. It
can also be used when developing methods and models for comparing size information
across different programming languages.

When using the data summary form to report measurement results, you should attach
supplementary rules forms for each source language used, just as you would with any other
report of software size.

118 CMU/SEI-92-TR-20

9.2. Summarizing Totals for Data Spec A (Project Tracking)

Figure 9-2 is a form we created for summarizing the tracking data we collect with Data Spec
A. Results recorded on several copies of Figure 8-1 can be aggregated and reported with
this form. A reproducible copy is included in Appendix E. Users should feel free to modify
the form or to create alternatives that better meet their specialized needs.

Source Code Size Reporting Form

FJ Physical source lines I I Logical source statements

Product or module name:

Definition name: Data Spec A (project tracking)

Source language:

Version:

Dated: 7/9/92

LI Measured U Estimated By:

How measured (list tools used):

Max. line length:

Date:

characters

Inoperative code: U Included U Excluded, unless functional U Excluded U Don't know

If excluded, how identified:

Delivery Usage

Delivered a In primary product •
Not delivered u External to product •

Total Removed

Measurement results: How Produced

Development Status

Coded

Unit tests completed

Integrated into CSCs

Test readiness reviewed

CSCI tests completed

System tests completed

Total

Programmed Generated Converted Copied Modified Total

Figure 9-2 Summary Reporting Form for Data Spec A (Project Tracking)

CMU7SEI-92-TR-20 119

9.3. A Structured Process for Requesting Summary Reports

When users of measurement data need insight into the intersections of different attributes, it
helps to have methods for conveying their specialized requests to those who extract
information from databases and prepare summary reports. This section outlines a structured
process for conveying such requests. Once again the definition checklist plays a prominent
role.

Figure 9-3 outlines the process. It begins with requesters using checklists to express their
information needs. These personalized checklists define the data arrays and individual
(marginal) totals the users want reported to them. The checklists can be either data array
requests (as shown in Figures 9-4 and 9-5) or data summary requests (as shown in Figure 9-
6). These information needs checklists then become the specifications for the reports
prepared by the people who program or operate report generators.

\

Information
needs

checklists

database of
measurement results

Figure 9-3 Using Definition Checklists to Specify Special Information Needs

9.4. Requesting Arrayed Data

Figures 9-4 and 9-5 are examples of the use of definition checklists to convey user requests
for two-dimensional arrays. In each case, the rules for inclusion and exclusion that apply to
attributes not in the arrays remain as illustrated in the basic definition in Chapter 5. As with
data specifications, when the Clarifications pages of the definition checklist are attached,
the requests stand independent of any definition of software size.

120 CMU/SEI-92-TR-20

Figure 9-4 is a request for an array that shows the status of development for each method of
production. It asks for a two-dimensional summary of the project tracking attributes whose
measurement has already been specified by Data Spec A (Figure 5-4). Except for being a
request from a user, it is identical to Data Spec A.

Figure 9-5, on the other hand, is not a duplicate of a prior measurement specification. It is a
request for a subset of the project analysis data recorded by organizations that use Data
Spec B (Figure 5-9).

When communicating requests for arrayed data to those who prepare reports, a useful rule
is:

Never ask for more than the number of
attributes you can display at a time.

Unless you are working with relatively sophisticated, computer-generated displays, this
number is likely to be two. More dimensions can lead to confusion on the part of those who
put your reports onto paper, and you may not get the information you want. Remember—you
can always fill out as many different, two-dimensional, checklist-based requests as you want.

CMU7SEI-92-TR-20 121

Definition Checklist for Source Statement Counts

Definition name: Data array request—
development status vs. production process

Date: 8/7/92
Originator: s. Smith

Measurement unit: Physical source lines
Logical source statements a

Statement type Definition [•] Data array
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

Includes Excludes

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1 •

2 •
3 •

4 •
5 •
6 •
7 •
8 •

How produced Definition Data array !• Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

•
•
•
•
•
•

Origin Definition W | Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

:•:•:•:•:•:•:•:•:•:•:•:•:•:•
•
•
•
•

•
•

•
•
•
•

Usage Definition !• | Data array
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes
•

•
3

Figure 9-4 Request for a Report of Development Status vs. How Produced

122 CMU/SEI-92-TR-20

Definition name: Data array request—
development status vs. production process

Delivery Definition [• | Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

,/

•
III!!

•
•

Functionality Definition [• | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
•

Replications Definition [• | Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition Data array !• I
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

m^msmMm
•
•

•
•
•
•
•
•

Language Definition Data array [• |
List each source language on a separate line.

1 Separate totals for each language

2 Job control languages

Includes Excludes

•

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 9-4 Request for a Report of Development Status vs. How Produced, Page 2

CMU/SEI-92-TR-20 123

Definition Checklist for Source Statement Counts

Definition name: Data array request—
statement type vs. programming language

Date: 8/7/92
Originator: J.Jones

Measurement unit: Physical source lines
Logical source statements a

Statement type Definition Data array | • | Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11 Textual comments: #6 + #7, even if on lines with other
12 statements

1 •

2 •
3 •

4 •
5 •
6 •
7 •
8 •

— •

How produced Definition !• | Data array Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

•
•
•
•
•
•

Origin Definition)• | Data array
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

includes Excludes
•

-:•:•:•:•:•:•:-:•:-:•:•:•:•:•:•: • :•;•>:•:•:•:•: •:•:•:-:

•
•
•
•

•
•

•
•
•
•

Usage Definition !• | Data array
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes
•

•
3

Figure 9-5 Request for a Report of Statement Type vs. Programming Language

124 CMU/SEI-92-TR-20

Definition name: Data array request—
statement type vs. programming language

Delivery Definition [• | Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
•

•
•

Functionality Definition [• | Data array
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
:':;:;; ";r

t/

Replications Definition !• | Data array
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition !• I Data array
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

WH
•
•

•
•
•
•
•
•

Language Definition Data array [• |
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

•

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 9-5 Request for a Report of Statement Type vs. Programming Language, Page 2

CMU7SEI-92-TR-20 125

9.5. Requesting Individual (Marginal) Totals

Figures 9-4 and 9-5 ask for arrayed data. Figure 9-6, on the other hand, is an example of a
request for simple marginal totals like those illustrated in Figure 9-1. Checks in the third
column of this form request individual totals.

The full form with the entries left blank is presented in Appendix E. This form can be used by
itself to ask for simple summaries, or it can be used in conjunction with requests for arrayed
data to get the marginal totals that go with the arrays. It can also be used as part of a data
specification to ask for counting and recording of selected attribute values that do not need to
be arrayed against other attributes.

Pages 3 through 5 of the data request form in Appendix E can be used not only to state the
rules you want applied when counting individual language constructs, but also to request
frequency counts for construct use. As with other summary totals, checks in the right-hand
column ask for these details to be collected and reported without disturbing or modifying the
basic definition for size or any other data request.

126 CMU/SEI-92-TR-20

Data Summary Request—Source Code Size

Definition name: Standard SLOC Date:
 Data Spec A — marginal totals Requester

8/7/92
H. Burger

Measured as:
[• 1 Physical source lines

] Logical statements
Totals
include

Totals
exclude

Individual
totals

Statement type
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12 .

1 •

2 •
3 •

4 •
5 •
6 •
7 •
8 •

How produced
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

• •
• •
• •
• •
• •

• •

Origin
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating systerr

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

•

•
•
•
•

•
•

•
•
•
•

Usage
1 In or as part of the primary product
2 External to or in support of the primary product

•
•

3

Figure 9-6 Request Specification for a Summary Report of Attribute Totals

CMU/SEI-92-TR-20 127

Definition name: Standard SLOC
Data Spec A — marginal totals

Totals
include

Totals
exclude

Individual
totals

Delivery
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

•:•:•:•:•:•:•:•:•:•:•:•:•:

•
•

•
•

Functionality
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

•:•:•:•:•:•:•:•:•:•:•:•:•:
•

•:•:•:•:•:•:•:•:•:•:•:•:•:
•

•

Replications
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

•
•

•
•

Development status
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

•:•:•:•:•:•:•:•:•:•:•:•:•:]

•
•

• •
• •
• •
• •
• •
• •

Language
List each source language on a separate line.

1 Separate totals for each language

2 Job control languages

'—§?"• V"

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 9-6 Request Specification for a Summary Report of Attribute Totals, Page 2

128 CMU/SEI-92-TR-20

10. Meeting the Needs of Different Users

As demonstrated in Chapter 9, one of the useful features of checklists with independent
attributes and mutually exclusive classes is that you can use them to request alternative
reports for different purposes. This means that you can use them to satisfy the needs of
different users. For example, project managers, configuration controllers, cost estimators,
reuse trackers, and quality improvers often need different measurements or different levels of
detail to do their jobs. With the checklist, each can describe his or her own data
requirements. You can then use additional checklists to consolidate these requests into a
common definition and its supporting data specifications. This provides a way to resolve
seemingly conflicting views. Figure 10-1 outlines the process we have in mind.

Users will often need to negotiate and compromise during consolidation as their proposals
get balanced against costs of collecting data and requirements for internal consistency. The
fact that each user has identified the coverage he or she needs in a succinct, structured way
greatly aids negotiation.

We recommend settling on a common definition for size before preparing data specifications.
Once the basic coverage is defined, designing specifications for additional data elements is
relatively straightforward. Moreover, the ability that the checklist gives to designate individual
attribute values for measurement provides a safety valve that facilitates compromise on
elements included in a basic definition. When users can get the data they want through
reports on individual (possibly excluded) data elements, they are often willing to accept the
coverage rules that others want in their common definition.

Preparing consolidated data specifications consists of checking off, in the inclusion columns,
all elements for which individual reports are requested. You can almost always do this
without changing the basic size definition, since a data specification is nothing more than a
request for counting other elements in addition to the agreed upon measure for size. When
the consolidations are complete, the inclusion columns of the data specifications become
specifications for (1) fields to be included in the database and (2) for forms for data collection.

When you measure, you will use the inclusion and exclusion rules in the consolidated
definition to count and record values for the common measure for size. You will also count
and record individual data elements according to the rules in their respective data
specifications. You will then enter each of these observations into your measurement
database. Finally, you will generate individualized reports by aggregating data from the
database according to the instructions given in each user needs checklists. By following this
process, different groups of users can all have their own customized size reports, without
requiring repeated measurement efforts.

The steps we recommend for constructing and using size definitions are listed in Figure 10-2.
As we have said, we view definition to be an active process that requires both negotiation
and communication. The definition checklist provides a structure for making these activities
easier than they otherwise would be.

CMU/SEI-92-TR-20 129

\

User needs
checklists

Common
definition
checklist

>

mam

Data
specification

checklists

Measurement
recording

forms

database of
measurement results

Figure 10-1 Use of Checklists to Construct Common Definitions While Meeting the Needs of
Different Measurement Users

130 CMU/SEI-92-TR-20

Steps for Constructing and Using Definitions

for Source Code Size
1. List the reasons why your organization wants measures for source

code size. Who will use your measurement results? How? What
decisions will be based on these reports?

2. Distribute copies of the definition and data summary request
checklists to the groups who will use the measurement results.
Have these groups use the checklists to state the information that
they need to perform their jobs. Have them also state any special
rules that they want applied during measurement. Use the
clarification sections of the definition checklist and the supporting
rules forms to aid this process.

3. Consolidate the inclusion and exclusion requirements of the
different users into a single common definition for size. Record the
results in a single checklist.

4. Consolidate the data array requirements of the different users into
data specifications and record the results in separate copies of the
definition checklist. Record any additional requirements for grand
totals or marginal distributions on consolidated data summary
requests.

5. Use the results of step 4 as design requirements for your
measurement database.

6. Use the users' proposed clarifications and supporting rules forms to
consolidate and reach consensus on the special instructions to be
followed when recording and reporting measurement results.
Attach the consolidated rules to the common definition checklist.

7. With the results of steps 3, 4, and 6 as guides, prepare code
counters and/or forms for collecting and recording measurement
results.

8. Collect measurements and enter the results in your database.

9. Using your users' data requests as specifications, generate the
reports they need.

10. Attach copies of the definition checklist, supporting rules forms, and
data specifications to each set of measurement reports.

Figure 10-2 Steps for Constructing and Using Definitions for Source Code Size

CMU/SEI-92-TR-20 131

As the structured process described in Figures 10-1 and 10-2 shows, the source statement
checklist can be used in different but nonconflicting ways to help you perform any of these
functions:

• Create a general-purpose, standardized definition for size.

• Identify and specify the data elements needed for different management purposes.
Examples of different purposes include project tracking, cost estimating, quality
normalization, reuse management, and process improvement.

• Adjust the granularity and quantity of reported detail as organizations progress to
higher levels of process maturity, all without changing previously agreed upon
definitions.

• Identify data fields required for size databases.

• Specify the content of specialized reports to be prepared for individual users.

With a definition checklist like the one in Figure 3-2 and a structured process like the one in
Figures 10-1 and 10-2, users can say exactly what data they want collected and recorded, so
that it can be aggregated to form both generic and specialized measures of software size.
The result is that a single, combined definition together with consolidated specifications for
collecting and recording measurement results can be made to serve the management needs
of different users.

132 CMU/SEI-92-TR-20

11. Applying Size Definitions to Builds, Versions, and
Releases

We measure size to help us plan, control, and improve activities that go into producing and
maintaining software systems. When we think of size in the context of activities, it is
apparent that at least two views are valid: size as a snapshot of product status and size as a
measure of the amount produced (or consumed) between two points in the process.

Understanding the distinctions between these views is important when applying size
measures to multiple builds, versions, and releases. Whenever physical source lines or
logical source statements are used in these instances, activity sizes cannot be obtained
simply by subtracting starting static size values from ending static size values—the difference
between two static measures is inadequate for describing the size of the tasks performed.
Instead, we require methods that permit us to describe size in ways that can be mapped
more directly to effort.

Checklist-based definitions like the one in Chapter 5 provide the kind of framework we need,
but we must use care lest we get tangled in terminology. For example, when discussing a
second build, it is not immediately clear just what terms like copied, modified, and removed
may mean. Nor is it immediately clear just how pronouncements like "Build 2 includes
50,000 source lines of commercial software" should be interpreted, especially when that
software has already been included in the description of Build 1. In either case, we can
easily confuse elements that are legitimately part of the work of Build 2 with those that are
accounted for in Build 1.

This seems to be an instance where a picture describes the solution more adequately than
words. Figure 11-1 shows how we apply the definition of Chapter 5 to multiple builds. We
use the same rules for multiple versions and multiple releases.

Figure 11-1 shows the first two builds of a multistep development. The origins of pre-existing
statements used in the first step (Build 1) are labeled Origin 1. The origins of pre-existing
statements used in the second step are labeled Origin 2. Note that all statements from Build
1 become classified as coming from a prior build when describing the size of Build 2. This
includes statements programmed and generated in Build 1. If you wish to track statements
from their previous origins, you have two options—you can go back and look at the data for
Build 1, or you can lump Builds 1 and 2 together and talk about the total size of the combined
activity that begins with the start of development and runs through the completion of Build 2.

Because it is easy to misinterpret counting rules for the How produced and Origin attributes
when measuring sizes for sequential builds, versions, or releases, we recommend attaching
an annotated version of Figure 11-1 or a similar figure to the definition checklist and data
specifications whenever measures of source code size are used for multistep developments.

CMU/SEI-92-TR-20 133

Origin 1

previous
version,

build,
or release

COTS

GFS

another
product

local language
library or O/S

commercial
library

reuse library

other
components

Build 1
(Origin 2)

programmed

generated

f converted
!»•••••••••••••••

copied
•*•••••••••••••••
I modified
jjjjjjjjjjjjUjjjjjjjjjjjijIgjjjti

removed

Origin 2

COTS

GFS

another
product

local language
library or O/S

commercial
library

reuse library

other
components

Build 2

programmed

generated
,;:•:•:•:•:•:•:•:•:•:•:•::•:•:':•::•:::•:::-::•':'>:::•:':•:-:•:•:-:•:;:;:

% converted
•"• • 1

copied

§" modified
M

removed

Figure 11 -1 Applying Size Definitions to Builds, Versions, and Releases

134 CMU/SEI-92-TR-20

12. Recommendations for Initiating Size Measurement

This chapter collects and summarizes some of the more important conclusions we reached
while preparing this report. We present these conclusions as recommendations. Many of
them have been discussed in earlier chapters.

12.1. Start with Physical Source Lines

Our principal recommendation is that organizations adopt physical source lines of code
(SLOC) as one of their first measures of software size. Subsequently, if they wish, they can
add counts of logical source statements or even other size measures, but only after the
requisite language-specific rules have been defined and automated counters have been built.

Our preference for starting with physical source lines rather than logical source statements
(or other measures) is not entirely arbitrary. Several reasons have been discussed already in
Chapters 4 and 6, and others are given in Appendix C. Our conclusion is somewhat different
than the one reached in the IEEE proposed Standard for Software Productivity Metrics [IEEE
92]. That draft standard expresses a preference for logical source statements. We
acknowledge the theoretical advantages that counts of logical source statements offer in
terms of relative independence from formatting style, but a number of observations persuade
us to believe that counting source lines of code encounters fewer difficulties. Some of these
observations are as follows:

• It is easier and cheaper to build automated counters for physical lines than it is for
logical statements. In fact, if you simply count all nonblank lines, you need know
nothing about the source language at all. Alternatively, if you want to skip comment
lines so that counts for noncomment, nonblank source statements are obtained, only
minor tailoring for individual languages is needed. The definition for SLOC proposed
in Figure 5-1 is just such a definition.

• Rules for determining when logical source statements begin and end are complex
and different for every source language. Different kinds of statements often have
different kinds of delimiters, and methods for identifying and treating embedded
statements and expression statements must be spelled out. Some logical source
"statements" may even be undefined, as when certain elements such as declarations
and comments are not classified as statements by the respective language standards
or reference manuals. Physical lines, on the other hand, have consistent delimiters,
regardless of language.

• It is generally easier for most people to interpret and compare measures of physical
line counts, especially in environments where coding standards, code formatters, or
pretty printers are used.

• Pressures to revert to overly simplistic counting rules for logical source statements
are high. These shortcuts lead easily to measures that are not comparable across

CMU/SEI-92-TR-20 135

different programming languages. For example, popular rules such as "count
terminal semicolons" do just that—they produce counts of semicolons, not counts of
logical source statements. Different languages use semicolons in entirely different
ways, making consistent interpretations difficult.

• Most historical data is in terms of physical source lines. Organizations should not be
forced to abandon these historical references.

Although we recommend starting with physical source lines as one of the first measures of
software size, we do not suggest that anyone abandon any measure that is now being used
to good effect. Nor do we suggest that counts of physical source lines are the best measure
for software size. It is unlikely that they are. But until we get firm, well-defined evidence that
other measures are better, we opt for simplicity—in particular, for the simplest set of explicit
rules that can be applied across many languages.

Some advocates of function point measures may disagree strongly with our primary
recommendation. This is well and good, and we encourage all function point users to
continue to expand upon their practices. In fact, in some environments function point
measures appear to have significant advantages over source statement counts. For
example, they are language-independent, often solution-independent, and usually
computable early in development life cycles, even before specific product designs are
available.

But function point measures have three properties that make us hesitate to recommend them
as something that every organization should implement:

1. Function points do not support project tracking. Because function points are not
contained within units, it is very difficult during development to say what percentage
of the total function point count is coded, what percentage is unit tested, what
percentage is integrated, etc.

2. Automated function point counters do not yet exist. To the best of our knowledge,
no-one today has the ability to feed source code or any other completed software
artifact to an automated tool that computes function points.

3. Function points are not equally applicable to all kinds of software. For example, few
if any organizations have reported consistent success in computing valid function
point counts for things like embedded, real-time systems, continuously operating
systems, or systems that spend large amounts of computational effort to generate a
small number of numerical results.

These, then, are our reasons for recommending that most organizations adopt physical
source lines as one of their first measures of software size. Once counts of physical source
lines are successfully implemented, one of the next measures we would look to would be
counts of computer software units (CSUs), as defined in DOD-STD-2167A. We see no
reason why checklists much like the ones in this report could not be used to clarify and
characterize counts of software units.

136 CMU/SEI-92-TR-20

12.2. Use a Checklist-Based Process to Define, Record, and Report
Your Measurement Results

1. When starting with physical source lines of code (SLOC), adopt the definition
illustrated in Figure 5-1. Our abilities to compare projects and learn from history
will be helped if we all speak a common language. (Alternatively, if you use logical
source statements, consider adopting the definition in Figure 5-2.)

2. If you need an alternative definition of size for internal work, use the processes in
Figures 10-1 and 10-2 to construct one that meets the needs of the principal users
of your measurement results.

3. Use the processes in Chapters 9 and 10 to identify the additional data elements
that you wish to have recorded. Be careful not to ask for data on too many
attributes, especially when first implementing your basic definition. Data
specifications like those in Figures 5-4 (Data Spec A—Project Tracking) and 5-9
(Data Spec B—Project Analysis), or subsets of them, are appropriate starting
points for many organizations.

4. Review and augment, as needed, the language-specific clarifications on pages 3
through 5 of the definition checklist. Ensure that all potentially confusing
peculiarities of all languages you use are identified, and that rules are assigned for
counting and classifying all physical lines. (This step becomes even more critical
when preparing definitions for counting logical source statements.) Include copies
of pages 3 through 5 with the completed checklists you give to all who use your
basic definition.

5. Complete and attach the Rules for Counting Physical Source Lines (Figure 7-1) to
your definition checklist. Use a separate rules form for each source language you
measure. (This step, but with the rules form for logical source statements, is even
more crucial when constructing an operational definition for counting logical source
statements.)

6. Use data recording forms like those in Chapter 8, either electronically or on paper,
to record your measurement results. Alternatively, use your data specifications
(step 3 above) as guidelines to construct specialized forms that better fit your
recording needs.

7. Ask your measurement users to use definition checklists or data summary request
forms to specify the reports they want to receive. Remind them to stay consistent
with the definition and data recording specifications that were agreed to in steps 1
through 3.

8. Generate the reports your users request. Attach completed copies of your
definition checklist, data specification checklists, and supplemental rules forms to
these reports. Complete and attach also a copy of the Practices Used to Identify
Inoperative Elements (Figure 7-3). This will help measurement users judge for
themselves how they will interpret the results you report.

CMU/SEI-92-TR-20 137

12.3. Report Separate Results for Questionable Elements

When applying any definition of size to a software object, perhaps the most important rule to
remember is:

When in doubt as to whether to include
a particular element in a statement count,

measure and report it separately.

Then, whether you elect to include such elements in your count or not, others will know just
what you have done, and they will be able to adjust your counts to meet their needs.

This advice applies especially to objects of source code that you are unsure about including
in a total measure for size. Remember—you can always apply your definition for size to
individual objects one at a time. If you report these results separately, your users and
customers can then make their own judgments as to whether to include these particular
measurement results in the totals they wish to use.

Please note that our advice does not require excluding separately measured elements from
size counts. The rule is satisfied whenever you include any element in a count, so long as
you make the inclusion quantitatively visible. The important point is to provide the
information that others must have to intelligently interpret measurement results. Should the
situation seem to require a large number of distinctly separate measures, we encourage you
to think your definitions and data specifications through carefully. Proliferations of collected
data sometimes add more to confusion than to value.

12.4. Look for Opportunities to Add Other Measures

Once you have counts for physical source lines well implemented, you may be ready to add
other measures of software size. Our preferences, roughly in order, would be for counts of
software units, logical source statements, and (where appropriate) function points.

Of these, we think counts of software units are likely to be the easiest to implement. Most
organizations use this measure today in one form or another. We suspect that counts of
software units could benefit from formal definition, perhaps much like the one in this report.

Our second choice would be to pursue counts of logical statements. Most of the work to
make these counts structured and consistent has been completed in this report. The step
that remains is, nevertheless, not as simple as it first seems. The missing ingredients are the
detailed lists of language-specific counting rules that must be identified and recorded for
each programming language. Forms like Figure 7-2 (Rules for Counting Logical Source
Statements) and pages 3 through 5 of the definition checklist provide a structured framework
for defining these ingredients. However, until these detailed rules have been recorded and

138 CMU/SEI-92-TR-20

evaluated for completeness, consistency, and acceptability to others, we are reluctant to urge
adoption of logical source statement counts as a widespread standard.

In the meantime, and even before formal measurement definitions are fully implemented
within your organization, applying the size checklist retroactively to describe and record the
rules used to collect historical data can help you better understand the information you
already have, so that you can use that information to more effectively estimate, plan, and
manage current projects. This observation applies to historical counts of both physical and
logical source statements. The results can be of immediate benefit, both to projects that are
already underway and to those that are being planned.

12.5. Use the Same Definitions for Estimates that You Use for
Measurement Reports

Definitions like those we have illustrated apply to estimates just as they do to actual counts.
They also apply whether or not the estimates are made before or after code is produced.

Moreover, the definitions apply even when reported results are mixtures of measured and
estimated values. Recognizing this is especially important when using measures of size to
track design progress, and when practices and tools for obtaining exact measurements for
some attribute values are less than fully developed. For example, distinguishing modified
statements from programmed and copied statements are instances where estimates must
sometimes be intermixed with actual counts. If counting tools and coding practices do not
yet support automated identification of modified statements, best results are likely to be
obtained by counting total statements (programmed plus modified, or copied plus modified)
and then estimating the number of modified statements as a percentage or proportion of the
total.

12.6. Dealing with Controversy

Source lines of code (SLOC) can be a controversial measure. Like many instruments, it
stands accused of being too one-dimensional and far too easy to misuse. We agree that the
world of software has many dimensions, that SLOC is but one, and that it is not the only
measure we would use for software size. We also agree that we would never use SLOC as
a measure without simultaneously observing and reporting other product and process
characteristics. But we submit that SLOC is a useful measure, provided we understand what
it represents, use it consistently, and communicate it clearly.

When we hear criticism of SLOC as a software measure, we are reminded of a perhaps
apocryphal story about a ditch digger who, when asked one day how he was doing, replied,
"Dug seventeen feet of ditch today." He didn't bother to say how wide or how deep, how
rocky or impenetrable the soil, how obstructed it was with roots, or even how limited he was
by the tools he was using. Yet his answer conveyed information to his questioner. It

CMU/SEI-92-TR-20 139

conveyed even more information, we suspect, to his boss, for it gave him a firm measure to
use as a basis for estimating time and cost and time to completion.

We submit that software organizations can be at least as proficient at using this kind of
information as ditch diggers—particularly if supported by the consistency and clarity made
possible by well-designed definition checklists.

With respect to misuse, we can only say that if you work with customers or organizations that
measure SLOC but use it in inappropriate ways, we hope that by publishing this report we
can at least encourage them to misuse it consistently, for then they will have a foundation for
improvement.

Finally, if your organization already measures and uses source lines of code or logical source
statements intelligently, we hope we have provided you with some operational methods for
improving the consistency and clarity with which you collect and report the information you
use.

12.7. From Definition to Action—A Concluding Note

The power of clear definitions is not that they require action, but that they set goals and
facilitate communication and consistent interpretation. With this report, we seek only to bring
clarity to definitions. Implementation and enforcement, on the other hand, are different
issues. These are action-oriented endeavors, best left to agreements and practices to be
worked out within individual organizations or between developers and their customers. We
hope that the materials in this report give you the foundation, framework, and operational
methods to make these endeavors possible.

140 CMU/SEI-92-TR-20

References

[Ada 83]

[Baumert 92]

[Betz 92]

[Boehm81]

[Boehm 88]

[Boehm 89]

[COBOL 85]

[DOD-STD-2167A]

[FORTRAN 77]

[Grady 87]

[Humphrey 89]

[Ichbiah 86]

[IEEE 90]

Reference Manual for the Ada Programming Language (ANSI/Ml L-STD-
1815A-1983). Washington, D.C.: United States Department of Defense,
1983.

Baumert, John H. Software Measures and the Capability Maturity Model
(CMU/SEI-92-TR-25). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1992.

Betz, Henry P.; & O'Neill, Patrick J. Army Software Test and Evaluation
Panel (STEP) Software Metrics Initiatives Report. Aberdeen Proving
Grounds, Md.: U.S. Army Materiel Systems Analysis Activity, 1992.

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs,
N.J.: Prentice-Hall, 1981.

Boehm, Barry W. "A Spiral Model of Software Development and
Enhancement." Computer 8, 5 (May 1988): 61-72.

Boehm, Barry W.; & Royce, Walker. "TRW IOC Ada COCOMO:
Definitions and Refinements," Proceedings of The Fifth International
COCOMO Users' Group Meeting. Pittsburgh, Pa: Software Engineering
Institute, Carnegie Mellon University, October 1989.

American National Standard, Programming Language COBOL (ANSI
X3.23-1985 [ISO 1989-1985]). New York, N.Y.: American National
Standards Institute, 1985.

Military Standard, Defense System Software Development (DOD-STD-
2167A). Washington, D.C.: United States Department of Defense, 1988.

American National Standard, Programming Language FORTRAN (ANSI
X3.9-1978 [ISO 1539-1980 (E)]). New York, N.Y.: American National
Standards Institute, 1987.

Grady, Robert B.; & Caswell, Deborah L. Software Metrics: Establishing
a Company-Wide Program. Englewood Cliffs, N.J.: Prentice-Hall, 1987.

Humphrey, Watts S. Managing the Software Process. Reading, Mass.:
Addison-Wesley, 1989.

Ichbiah, Jean D.; Barnes, John G. P.; Firth, Robert J.; & Woodger, Mike.
Rationale for the Design of the Ada Programming Language.
Minneapolis, Minn.: Honeywell Systems and Research Center, 1986.

IEEE Standard Glossary of Software Engineering Terminology (IEEE Std
610.12-1990). New York, N.Y.: The Institute of Electrical and Electronics
Engineers, Inc., 1990.

CMU/SEI-92-TR-20 141

[IEEE 92]

[IFPUG91]

[Kemighan 88]

[McGarry 90]

[McGhan 91]

[McGhan 92]

[Park 88]

[Putnam 91]

[Rozum 92]

[Schultz 88]

[USAF 92]

[Stroustrup 87]

Standard for Software Productivity Metrics [draft]' (P1045/D5.0).
Washington, D.C.: The Institute of Electrical and Electronics Engineers,
Inc., 1992.

International Function Point Users Group. Function Point Counting
Practices Manual, Release 3.2. Westerville, Ohio: IFPUG, 1991.

Kernighan, Brian W.; & Ritchie, Dennis M. The C Programming
Language, Second Edition. Englewood Cliffs, N.J.: Prentice-Hall, 1988.

McGarry, John J. "Applied Software Metrics" (Presentation Charts).
Newport, R.I.: Naval Underwater Systems Center, 1990.

McGhan, James N.; & Dyson, Peter B. CECOM Executive Management
Software Metrics (CEMSM)-CEMSM Guidebook. Indialantic, Fla.:
Software Productivity Solutions, Inc. 1991.

McGhan, James N.; & Dyson, Peter B. CECOM Executive Management
Software Metrics (CEMSM)—Cost Benefit Analysis. Indialantic, Fla.:
Software Productivity Solutions, Inc. 1992.

Park, Robert E. "The Central Equations of PRICE S," Proceedings of the
Fourth Annual COCOMO Users' Group Meeting. Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, November
1988.

Putnam, Larry H. Measures for Excellence: Reliable Software On Time,
Within Budget. Englewood Cliffs, N.J.: Prentice-Hall, 1991.

Rozum, James A. Software Measurement Concepts for Acquisition
Program Managers (CMU/SEI-92-TR-11). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1992.

Schultz, Herman P. Software Management Metrics (ESD-TR-Q8-00^.
Bedford, Mass.: The MITRE Corporation, 1988.

Software Management Indicators (Air Force Pamphlet 800-48).
Washington, D.C.: Department of the Air Force, 1992.

Stroustrup, Bjame; The C++ Programming Language, Reading, Mass.:
Addison-Wesley, 1987.

142 CMU/SEI-92-TR-20

Appendix A: Acronyms and Terms

A.1. Acronyms

CMU Carnegie Mellon University

COCOMO Constructive Cost Model [Boehm 81]

COTS commercial off-the-shelf

CSC computer software component

CSCI computer software configuration item

CSU computer software unit

DARPA Defense Advanced Research Projects Agency

DoD Department of Defense

DSI delivered source instructions

DSLOC delivered source lines of code

GFS government furnished software

IEEE The Institute of Electrical and Electronics Engineers, Inc.

IFPUG The International Function Point Users Group

KDSI thousands of delivered source instructions

KLOC thousands of lines of code

KSLOC thousands of source lines of code

LOC lines of code

PDL program design language

RFP request for proposal

SEI Software Engineering Institute

SLOC source lines of code

SWAP Software Action Plan

3GL third-generation language

4GL fourth-generation language

CMU/SEI-92-TR-20 143

A.2. Terms Used

Attribute - A quality or characteristic of a person or thing. Attributes describe the nature of
objects measured.

Blank comments - Source lines or source statements that are designated as comments but
contain no other visible textual symbols.

Blank lines - Lines in a source listing or display that have no visible textual symbols.

Comments - Textual strings, lines, or statements that have no effect on compiler or program
operations. Usually designated or delimited by special symbols. Omitting or changing
comments has no effect on program logic or data structures.

Compiler directives - Instructions to compilers, preprocessors, or translators. Usually
designated by special symbols or keywords.

Computer software component (CSC) - A distinct part of a computer software configuration
item (CSCI). CSCs may be further decomposed into other CSCs and computer software
units (CSUs) [DOD-STD-2167A].

Computer software configuration item (CSCI) - A configuration item for software [DOD-
STD-2167A].

Computer software unit (CSU) - An element specified in the design of a computer software
component (CSC) that is separately testable [DOD-STD-2167A].

Continue statement - Statements that have no effect on a program's logic other than to
pass to the next statement. In some languages (FORTRAN is an example), labels can be
attached to continue statements so that they can be used as destinations for or terminations
of logical execution paths.

Dead code - Code that is present in a delivered product but is never referenced, accessed,
or used.

Declarations - A non-executable program statement that affects the assembler's or
compiler's interpretation of other statements in the program. Examples include type and
bounds declarations, variable definitions, declarations of constants, static initializations,
procedure headers and argument lists, function declarations, task declarations, package
declarations, interface specifications, generic declarations, and generic instantiations.

Delivered statements - Statements that are delivered to a customer as part of or along with
a software product. There are two subclasses: (1) statements delivered in source form and
(2) statements delivered in executable form but not as source.

Embedded statement - A statement used within or as an argument to another or inserted
between begin/end markers.

144 CMU/SEI-92-TR-20

Empty statement - A statement that occurs when two or more statement delimiters appear
in succession. This definition holds even when the delimiters are separated by one or more
blank characters or when the delimiters are on different source lines.

Executable statement - A statement that produces runtime actions or controls program flow.

Format statement - A statement that provides information (data) for formatting or editing
inputs or outputs.

Logical source statement - A single software instruction, having a defined beginning and
ending independent of any relationship to the physical lines on which it is recorded or printed.
Logical source statements are used to measure software size in ways that are independent
of the physical formats in which the instructions appear.

Master source statements - The source statements to which changes or additions are
made when maintenance actions are needed.

Measure - n. A standard or unit of measurement; the extent, dimensions, capacity, etc. of
anything, especially as determined by a standard; an act or process of measuring; a result of
measurement, v. To ascertain the quantity, mass, extent, or degree of something in terms of
a standard unit or fixed amount, usually by means of an instrument or process; to compute
the size of something from dimensional measurements; to estimate the extent, strength,
worth, or character of something; to take measurements.

Measurement - The act or process of measuring something. Also a result, such as a figure
expressing the extent or value that is obtained by measuring.

Nondelivered statements - Statements developed in support of the final product, but not
delivered to the customer.

No-op statement - Statements that have no effect on a program's logic other than to pass to
the next statement. In assembly languages, no-op statements—unlike null statements—can
consume execution time.

Null statement - Statements that have no effect on a program's logic other than to pass to
the next statement.

Origin - An attribute that identifies the prior form, if any, upon which product software is
based.

Physical replicates - Copies of blocks or sections of master source code that are included in
a product through physical storage in master source files.

Physical source statement - A single line of source code.

Postproduction replicates - Copies of a product that are generated from the same master
source code and that form part of the extended operational system.

CMU/SEI-92-TR-20 145

Source statements - Instructions or other textual symbols, either written by people or
intended to be read by people, that direct the compilation or operation of a computer-based
system.

Statement delimiter - A symbol or set of rules that identifies when a statement begins or
ends.

Statement type - An attribute that classifies source statements and source lines of code by
the principal functions that they perform.

Usage - An attribute that distinguishes between software that is developed or delivered as an
integral part of the primary product and software that is not.

146 CMU/SEI-92-TR-20

Appendix B: Candidate Size Measures

When the Size Subgroup of the Software Metrics Definition Working Group began its work,
we started by constructing lists of observable inputs and outputs that might be used to
quantify the size of activities associated with producing and supporting software systems.
We found far more potential targets for measurement than we had thought possible. Figure
B-1 shows our results. We present the lists here not just because they served as our starting
point, but so that you can use them to help launch explorations of other measures of size that
can be used to manage and improve software processes. We make no claim that the lists
are complete—they merely note some of measures worth considering.

In constructing the lists in Figure B-1, we viewed activities as processes that take inputs and
transform them into outputs. The thesis was that by measuring the volume of inputs and
outputs, organizations gain information that helps them plan, manage, and improve their
underlying processes.

Although our focus is on processes, the measurable elements in Figure B-1 are almost
always work products, not activities. Whenever our goals are to plan, control, and improve
processes, one of our principal methods for attaining these goals is by monitoring products.
As size measurement evolves, it is from lists like those in the figure that new candidates for
size measures can be selected. We believe that checklist-based methods like the ones in
this report can be effective in defining many of these potential measures.

One reviewer expressed concern that Figure B-1 could suggest a fixation on a waterfall
model of software development. This was certainly not the case when the Size Subgroup
generated the lists. We simply identified activities frequently used in producing and
supporting software systems, regardless of the process model used. The names in the left
column are representative of those used in references like DOD-STD-2167A and IEEE Std
610.12-1990. Readers who find other terms better suited for describing their own local
practices should feel free to modify the activity names in Figure B-1.

CMU/SEI-92-TR-20 147

Activity Measurable Inputs Measurable Outputs
Requirements
Analysis

verbs
shalls
requirements units
RFP pages
proposal pages
characters of text

pages of design requirements
objects
object classes
bubbles
CSCIs
interface control documents
rules
Petri net firings
threads (of control)
external interfaces
function points
function point primitives:

files, records, fields, transactions,
inquiries, etc.

entries into the requirements
traceability matrix

parts of requirements:
screens, displays, files, panels,
messages, etc.

system report formats
input screen formats
peer reviews
inspections

Test Planning shalls
requirements units
CSCIs
rules
threads (of control)
external interfaces
mappings from requirements
inter-system interfaces

test steps
test cases
unique tests
peer reviews
inspections

Figure B-1 Software Size—A Partial Listing of Targets for Measurement

148 CMU/SEI-92-TR-20

Activity Measurable Inputs Measurable Outputs
Design pages of design requirements

characters of text in requirements
objects
classes
instance relationships
rendezvous
bubbles
CSCIs
rules
Petri net firings
external interfaces
external (user) inputs
function points
system report formats
input screen formats

CSCs and CSUs
lines of PDL
pages of coding specifications
pages of documentation
objects
bubbles
charts
frames
asynchronous controls
synchronous controls
tasks
rendezvous
threads
message relationships
stimulus-response relationships
internal interfaces
intrasystem interfaces
mappings from requirements
algorithms
encapsulated operations
design walkthroughs
design inspections
prototype screens, displays, files,

panels, messages, etc.

Coding &
Unit Testing

objects
bubbles
charts
frames
asynchronous controls
synchronous controls
CSCs & CSUs
tasks
rendezvous
internal interfaces
mappings from design
algorithms
encapsulated operations
builds
deliveries
increments

source statements
source lines
source characters
noncommentary source words
COBOL verbs
pages of code
pages of documentation
comments
objects
CSUs
tasks
machine language instructions
code walkthroughs
code inspections
code paths
exception conditions
bytes of compiled code
bits of compiled code
words of memory

Figure B-1 Software Size—A Partial Listing of Targets for Measurement (Continued)

CMU/SEI-92-TR-20 149

Activity Measurable Inputs Measurable Outputs
Integration
& Testing

source statements
source lines
source characters
noncommentary source words
COBOL verbs
CSCs & CSUs
test steps
test cases
unique tests
inter-module interfaces
inter-system interfaces
external interfaces
exception conditions
branches
cause-effect pairs
deliveries

source statements
source lines
source characters
noncommentary source words
bytes in load modules
COBOL verbs
CSCs & CSUs
test steps
test cases
unique tests
inter-module interfaces
inter-system interfaces
external interfaces
test results
faults
function points
test coverage
thread tests
peer reviews/inspections

Operations source statements
source lines
source characters
noncommentary source words
COBOL verbs
operators
operands
nesting levels
pages of code
pages of user documentation
pages of maintainer documentation
test steps
test cases
unique tests
inter-system interfaces
exception conditions
job steps
problem reports
change requests
function points

run times
memory requirements
number of nodes
number of terminals
number of replicated systems
number of statements bypassed
people served
sites served
number of installations
average daily throughput volume
number of reports generated per

week/month
user/operator actions
user/operator keystrokes
problems closed
change requests completed

Figure B-1 Software Size—A Partial Listing of Targets for Measurement (Continued)

150 CMU/SEI-92-TR-20

Activity Measurable Inputs Measurable Outputs
Peer Reviews source statements defects found

source lines improvement opportunities
noncommentary source words action items
proposal pages
plan pages
report pages
people assigned
test steps
test cases

Documentation outlines pages
drafts final documents

pages of text electronic
tables printed
figures collated

names and organizations on assembled
distribution lists distributed

copies
reviews
change bars
peer reviews
inspections

Quality standards audits
Assurance policies reports

procedures action items
processes tests witnessed

tests performed
formal reviews
informal reviews
walkthroughs
peer reviews
meetings
products & summaries from reviews,

walkthroughs, etc.

Configuration software products reports
Management problem reports baselines

change proposals change notices
people on the change control board approvals

meetings
items resolved

Change Control problem reports change notices
Board Meetings change proposals approvals

disapprovals
deferrals

Figure B-1 Software Size—A Partial Listing of Targets for Measurement (Continued)

CMU/SEI-92-TR-20 151

Readers who would like to expand the lists in Figure B-1 (or create others of a similar nature)
should keep in mind that outputs of one process or activity are almost always inputs to
others. An important corollary is that inputs come from somewhere, and that "somewhere" is
often another activity. Figure B-2 is a simple illustration. Explicit recognition of this principle
helped the Size Subgroup significantly, not only when building the lists of inputs and outputs,
but also when identifying the processes (activities) that are producers and consumers of
software-related artifacts. By consciously tracing the flows of inputs and outputs, members
found many other inputs, outputs, and activities that they might otherwise have overlooked.

Resources
(people, time, etc.) Activity

Figure B-2 Using Inputs and Outputs to Identify Activities

Another point is also worth noting. Sometimes the lists in Figure B-1 appear to show the
same items as both inputs and outputs to a single activity. On reflection, it should become
apparent that although the names are the same, the items themselves are different. For
example, bubbles and objects are listed as both inputs and outputs of software design. The
difference is that output bubbles and objects are expanded versions that contain more detail
than those that were received as input specifications. Although of the same class, they are
not the same items, as they represent different levels of design decomposition. Similarly, the
inputs and outputs for integration and test share several common names (for example,
source statements, source lines, CSCs and CSUs, test steps, and inter-module interfaces).
The difference here is that the outputs are integrated and tested items, while the inputs are
not. Why might we be interested in the distinctions between such measures? One reason is
that differences between observed volumes of inputs and outputs can be useful for
measuring backlogs and for tracking progress, particularly when compared against
corresponding values in project plans.

152 CMU/SEI-92-TR-20

Appendix C: Selecting Measures for Definition—Narrowing
the Field

The checklist-based framework in this report appears to be applicable to many potential size
measures. Nevertheless, each measure requires special treatment. To progress from
candidate measures to specific examples, the Size Subgroup had to sharpen its focus. In
this appendix we explain our reasons for selecting source statement counts as the basis for
illustrating the framework, and we outline the path we followed in specializing the framework
to these measures.

C.1. The Choices Made

The Size Subgroup chose two source code measures—physical source lines and logical
source statements—as our first measures for formal definition. The criteria that most
influenced these selections were:

- Frequency of use (and misuse). The primary goal from the beginning of this effort
was to clarify measures that are used widely now, but are used with inconsistency
and ambiguity.

- Utility with respect to the Capability Maturity Model [Humphrey 89]. We
concluded that we should focus on fundamental management measures that can help
organizations move from level 1 (ad hoc) to level 2 (managed) processes, yet still
remain useful as process maturities increase.

- Timeliness. There were strong advocates in the Subgroup for pushing size
measurement back as early into the development process as possible.

- Usefulness as predictors. We recognized that the value of size measures is
governed by our abilities to use them as predictors when planning and managing
downstream activities.

- Automatabiiity. We believed that the ability to automate size measurement will be
essential for satisfying other criteria such as economy, consistency, and
completeness, as well as for overcoming resistance to change.

In retrospect, the fourth criterion was probably the most influential in helping us assign
priorities to our most highly rated measures. It says that in order to gain confidence in a size
measure, we must be able to evaluate its effectiveness in terms of other, downstream
measures. This in turn implies that downstream measures must already be in place. Since
the subgroup could not hope to define all size measures on the first pass, our conclusion was
that we should begin with measures whose utility as predictors of cost and schedule are
already established. By doing so, we could lay a foundation from which to begin working
back upstream.

CMU7SEI-92-TR-20 153

Figure C-1 is a sketch of one sequence we discussed. Although the flow of quantitative
information begins in the upper left corner, it would be a mistake to start there when
constructing our first definitions. The reason is that effectiveness of size measures is usually
best judged in terms of the help they provide in predicting the sizes of subsequent stages.
Without downstream definitions, we have no criteria for testing the predictive capabilities of
upstream measures. By starting at the lower right and working upstream, we ensure that
tools (defined measures) are available to evaluate upstream measures, so that we can turn
measurement results into estimates and plans of verifiable quality.

shalls

: •;

preliminary [
design pages

detailed
design pages r- —|

units

source statements
& source lines

• ,,,,,, ' , , .,,.,.... •••••••• •••••••••••^••••^V•^•••'•••••^••••••••••••'•^•••;:^^;;^;^;;a•^•'•'^'^••'•'^'^^^^^^^•^•^•^•^•^•

Figure C-1 Priorities for Definition

Source lines and statements are not the only size measures used today for planning and
estimating software activities. In some environments, especially those in which business
applications are developed or used, function points are often preferred over source lines and
source statements to describe product size. Function points also ranked high on the Size
Subgroup's list for early definition. They were deferred not because they were viewed as
unimportant, but because they did not satisfy our criterion for automatability, because they
are not particularly suitable for project tracking, and because another organization, the
International Function Point Users' Group (IFPUG), has assumed jurisdiction. Since IFPUG
is working actively to formalize practices for function point measures [IFPUG 91], the Size
Subgroup saw little value in undertaking duplicative efforts.

154 CMU/SEI-92-TR-20

C.2. The Path Followed

Figure C-2 outlines the path initiated by the Size Subgroup and followed since by the SEI in
preparing this report. As indicated, the first class of measures to which we applied the
framework was counts of source code statements. Within this class, two particular measures
have been addressed—physical source lines and logical source statements. The difference
between the two is that lines of code are physical entities, while logical statements are
attempts to characterize software size in ways that are independent of the physical formats in
which instructions appear.

We constructed a definition checklist for these two size measures. We then used the
checklist to create two example definitions, one for physical source lines and the other for
logical source statements. We also used the checklist to illustrate some recording and
reporting specifications that might be appropriate for organizations with different
measurement needs and capabilities.

Although the examples created to date center around source code measures (counts of
source lines and source instructions), our view is that these are but two of many useful
measures of software size. Figure B-1 lists many other possibilities. The Size Subgroup
selected source lines and source instructions for its first examples primarily because counts
of these entities are among the most widely used (and misused) software size measures
today. Source lines and, to a lesser extent, source instructions are also measures for which
automated counters can readily be constructed, and they are clearly measures that can
benefit from rules that explain exactly what is included in (and what is excluded from)
reported results.

By providing example definitions for counting physical and logical source statements, we are
in no way recommending them as the only measures of size. Given time, we would define
other measures as well.

CMU/SEI-92-TR-20 155

^counts of
source

.statements

I'JJJJJJJA'JJJJ.WlU.1.1.1.'.'.1.1.1.1.1.'.'.'.1.1. :-x*x-x*xXx*x-x*x*x-x-x-x-x*

Definition
checklist
 • •
 •
 •
 • •

I
physical

source lines
(SLOC)

Data spec A:
 •
 •
 •

framework for
defining

software size

Supplemental
rules form

XX

XX

XX

Data spec B:
 • •
 •
 •

Recording
form A

Data spec C:
 • •
 •
 •
 • •
 •

Recording
formB

.,.,Tr),.,,,iT»,., mmmmmsmmm
Recording

formC

#_

• •
• •

[measure j

I Tn)

logical
source

statements

" mmmmm m
Supplemental

rules form
XX

XX

XX

Data spec A:
 •
 •
 •
x*x:xSxSmx:!?«*!:x"

Data spec B:
 • •
 •
 •

•!.!m!.!.x.:lx«XvX.:x.x-!-»

Recording
form A

iXxiKxSSxKXxXx:::

Data spec C:
 • •
 •
 •
 • •
 •

Recording
formB

Recording
formC

• •
• Q

Figure C-2 The Path Followed When Applying the Framework to Construct Specific
Definitions and Data Specifications

156 CMU/SEI-92-TR-20

Appendix D: Using Size Measures—Illustrations and
Examples

In this appendix, we illustrate a few of the ways in which we have seen counts of source
statements used to help plan, manage, and improve software projects and processes. Our
purpose is not to be exhaustive, but rather to highlight some interesting uses that you may
find worth trying in your own organization. We also want to encourage organizations to seek
other new and productive ways to put size measures to work, and we would very much like to
hear from those who succeed. We would like to see other examples of interesting and
creative applications of size measurement, and we invite you to send your success stories to
us.

Like most good ideas, the ones we show here have all been borrowed from someone else.
In fact, that was our principal criterion: the examples in this appendix—or ideas much like
them—have all been used in practice. We are particularly indebted to John McGarry of the
Naval Underwater Systems Center for sharing his methods with us. Figures D-2 through D-9
are based on charts from presentations we have heard him make [McGarry 90]. Similarly,
Figures D-10 and D-11 are adaptations of illustrations we found in Bob Grady's and Deborah
Caswell's excellent book on experiences with software metrics at Hewlett-Packard [Grady
87].

CMU/SEI-92-TR-20 157

D.1. Project Tracking

The first use of counts of source statements that we illustrate (Figure D-1) will be familiar to
almost every software professional. It is simply a display of the cumulative, month-to-month
history of a project's progress through its various overlapping phases. Progress can be
measured in terms of either logical or physical source statements. Charts like this are
designed to be updated each reporting period, so that the points for the most recent entries
reflect current status.

In the early reporting periods of a project, not all points on charts like Figure D-1 will
represent actual measurements. Values for the number of statements designed but not yet
coded will always be estimates, so totals for statements designed will be mixtures of
estimates and actual counts. This state of affairs will persist until all coding is complete.

200 -i

Source
Statements 100
(thousands)

o Designed
-•— Coded
-o— Unit Tested
-*— Integrated
 Planned

10 20

Contract Month

Figure D-1 Tracking Development Progress

158 CMU/SEI-92-TR-20

D.2. Exposing Potential Cost Growth

Our second illustration is interesting in that it shows an instance where definitions for size
and projections of measurement results can be used long before actual measurement results
become available. In Figure D-2 we show an example in which an acquisition agency (or
perhaps the upper level management of a development contractor) has plotted two pieces of
information extracted from each of a succession of development plans. This contract was bid
and won on the basis that there would be substantial reuse of existing code. The first
conclusion that one could draw from Figure D-2 is that because code growth appears to be
nearing 20%, costs are likely to be similarly affected. The second conclusion is that the
situation is in fact much worse—all of the promised reuse has disappeared and the forecast
for new code development is now up by 50%. If this information has not been reflected in
current cost estimates and schedules, some serious questions should be asked.

400

300

Source 20° ">
Statements
(thousands)

100

d Reused Code
H New Code

o -—i •• i—-—|—-—i—-—i—-—i—-—i—-—r
BAFO Contract Plan 1 SDR Plan 2 Plan 3 Plan 4 Plan 5

Plans

Figure D-2 Exposing Potential Cost Growth—The Disappearance of Reused Code

CMU/SEI-92-TR-20 159

D.3. Gaining Insight into Design and Coding Practices

In our next examples, Figures D-3 and D-4 illustrate the use of source statement measures
to gain insight into design and coding practices. This insight can be particularly helpful when
new tools and methods such as Ada or object-oriented design are introduced or when
organizations want quantitative indications of the progress and effectiveness of process
improvements and training.

Statement Profile for Component A (7 Files) Statement Profile for Component B (56 Files)
2%

54%

44%

34%
56%

Statement Profile for Component C (63 Files)
i%5%

Statement Profile for Component D (24 Files)
1%

55%

39%

Declarations
Executatble
Pragmas
With 99%

Figure D-3 Comparison of Product Components—Uncovering Poor Design Practices

160 CMU/SEI-92-TR-20

For example, with Figure D-3 and the additional information that components A, B, C, and D
form a product being developed in Ada, we can infer that some of the major features of Ada
have not been exploited. In particular, the data for component D shows that 99% of D is
composed of data declarations, suggesting that much of the product's design may be based
on shared global declarations that permeate and ripple through other modules. This merits
investigation, as the use of global declarations and global data is one of several
programming practices that software professionals now recognize as being error-prone. Ada
and other new languages have been specifically designed so that practices like this can be
eliminated.

Figure D-4 provides another example that leads to much the same conclusion. Here we see
a case where 40 of 47 modules in a product contain no type definitions at all, while one of the
other modules has between 16 and 31. This suggests that the developers of this software
have not yet learned to use the principles of information hiding that are now recognized as so
important to preventing defects and to reducing development and maintenance costs. Had
they used information hiding, we could expect to see a greater number of local definitions
isolated within individual modules, where their effects could not inadvertently contaminate
other modules.

Number
of

Modules

50

40

30

20

40

£Z

1 2-3 4-7 8-15

Number of Type Declarations
16-31

Figure D-4 Detecting Weak Designs—The Absence of Information Hiding

CMU/SEI-92-TR-20 161

D.4. Early Warnings: The Need for Schedule Replanning

Figures D-5, D-6, and D-7 show three views of the same project. Figure D-5, which shows
coding progress plotted against the third version of the development plan, is of a type often
used by development and acquisition managers. If this is all the information we are shown,
we might infer that the project has been pretty much on schedule through month 10, but that
it has now started to fall behind and may require some minor adjustments or replanning to
bring it back onto track.

Figure D-6, however, suggests that the problems may be more serious than Figure D-5
indicates. Here we have plotted measured progress against the projections in the original
plan, and major shortfalls are apparent. After seeing Figure D-6, we would certainly want to
ask about the replanning that has occurred since the original plan and the impact that the
departures from the original plan will have on projected costs and schedules.

Interestingly, we do not have to wait for actual measurements from the development
organization to gain much of the insight we seek. In fact, we could have obtained this insight
even earlier. As Figure D-7 shows, if we simply plot the data from each of the developer's
plans on the same graph, we see that early dates have simply been slipped and that no real
schedule replanning has been done.

Figure D-7 suggests some even more probing questions. Since the developer has made but
minor changes in the planned completion date despite falling significantly below the original
profile over the last nine months, there is reason to examine the production rate that the
current plan implies. When we do this, we see that the current plan projects that code will be
completed at an average rate of 12,000 statements per month for months 12 through 20.
This is highly suspect, since the developer's demonstrated production capability has yet to
reach an average rate of even 2,500 statements per month, something considerably less

150 n

100 -
Source

Statements
(thousands)

50 "

-•— Plan 3
M Actuals

T
5 10 15

Contract Month

Figure D-5 Project Tracking—The Deviations May Seem Manageable

162 CMU/SEI-92-TR-20

150 "I

100 -
Source

Statements
(thousands)

50 "

Original Plan
Actuals

T
5 10 15

Contract Month

Figure D-6 Project Tracking—Deviations from Original Plan Indicate Serious Problems

150 -i

100 -
Source

Statements
(thousands)

50 -

Original Plan
Plan 2
Plan 3
Current Plan

Contract Month

Figure D-7 Project Tracking—Comparisons of Developer's Plans Can Give Early
Warnings of Problems

than the rate of 7,600 statements per month in the original plan. It would be interesting at
this point to examine the developer's current plan to see how it proposes to more than
quadruple the rate of code production. If, in fact, the developer sticks with a proposal to use
accelerations of this magnitude to meet the original completion date, it may be wise to place
increased emphasis on measuring and tracking the quality of the evolving product.

CMU/SEI-92-TR-20 163

D.5. Detecting Deferred Development

This example looks at changes that have occurred in plans for the first five builds of a
product that is being developed in sequential stages. The first two builds depicted in Figure
D-8 show no major anomalies other than the disappearance of 25,000 statements that were
being counted on for reuse. Since these statements do not reappear in later builds, the
presumption is that they have been replaced by new code, with concomitant implications for
cost and schedule.

Of more interest, however, is that nearly 90,000 statements have been omitted or deferred
from Builds 3 and 4, perhaps to reappear in Build 5, which has grown by 140,000 statements.
Here we have indications not only that the size of the product is increasing, but also that the
scheduled completion date is likely to be in even greater danger. We would be inclined to
give the plans and estimates for Build 5 very close scrutiny.

Changes to Planned Build Size

150 -|

100"

Source M

Statements
(thousands)

-50

-100

U New Code
• Reused Code

12 3 4 5
Build Number

Figure D-8 Indications of Deferred Development and Disappearing Reuse

164 CMU/SEI-92-TR-20

D.6. Indications of Design Turbulence

Figure D-9 is a simple plot of the estimated sizes of the different configuration items (CSCIs)
that make up a new software system. Two values are plotted for each CSCI—the estimated
size at the software specification review (SSR) and the estimated size at the preliminary
design review (PDR). Although the plotted values suggest some code growth (something
easily confirmed with another type of chart), our major concern here is the indication of large
differences between the SSR estimates and the PDR estimates for most of the configuration
items. For eight of the items, the discrepancy is more than 100% of the smaller value.
Apparently there has been a substantial change in either the developing organization's view
of the product or its understanding of the job. Alerted by this information, although it is far
from conclusive, we would want to probe further to ensure that we understand the reasons
for the extent of the changes and the possible implications this has for product quality and
the needs for project replanning.

50 -I

40-

Esti mated 30 1
Source

Statements
(thousands) 20

EH Software Specification Review
• Preliminary Design Review

Figure D-9 Indications of Design Turbulence

CMU/SEI-92-TR-20 165

D.7. Normalizing Quality Measures

Figures D-10 and D-11 illustrate two applications of quality measures in which normalizations
with respect to size play an important role. Without normalization based on appropriately
defined size measures, many inferences drawn from quality measurements would be invalid.

In Figure D-10, we see how one organization's experience with discovery of software errors
varies as a function of product type. This figure also shows rather dramatically one reason
why much emphasis in software engineering today is directed toward increasing the amount
of reuse in software development.

Average Number
of Defects

per Thousand
Lines of Code

Firmware Systems Applications Reused

Product Type

Figure D-10 Densities of Defects Discovered Before Products Were Released

166 CMU/SEI-92-TR-20

In Figure D-11, we have a related example in which normalized quality measures are used to
provide greater insight into the relationships between defect densities and productivity. To
prepare this graph, the organization first ranked its projects in increasing order of
productivity. (Useful measures of software productivity also depend on well-defined
measures of software size.) The organization then plotted the observed defect densities
against the productivity rankings. Although some scatter in the results was found, the figure
shows a clear relationship between increasing quality (low defect densities) and increasing
productivity.

The relationship in Figure D-1 may well have explainable causes. On the one hand, it may
be taken as evidence that reducing defects improves productivity. On the other hand, it may
simply be evidence that less complex products have both lower defects and higher
productivities. If further investigation shows that the observed trend is not related to product
complexity, information like this can be helpful in convincing organizations that one of the
best ways to improve productivity is to focus on preventing defects. Otherwise, it can
suggest the magnitude of the benefits that can be gained from reducing product complexities.

Defects
per KSLOC

1—i—i—i—i—i—i—i—r
9 10 11 12 13 14 15 16 17 18 19 3 4 5 6 7

Projects Sorted by Increasing Productivity

Figure D-11 Defect Densities for Firmware

CMU/SEI-92-TR-20 167

Appendix E: Forms for Reproduction

The following figures are repeated in this appendix in reproducible form. Figure numbers,
page numbers, document footers, and sample entries have been removed, so that readers
can copy and use the pages for their own purposes.

Original Page Number

Figure 3-2 Definition Checklist for Source Statement Counts 16

Figure 5-1 Definition for Physical Source Lines of Code (SLOC) 61

Figure 5-2 Definition for Logical Source Statements 67

Figure 5-4 Data Spec A (Project Tracking) 74

Figure 5-9 Data Spec B (Project Analysis) 80

Figure 5-10 Data Spec C (Reuse Measurement) 83

Figure 5-11 Data Spec B+C (Combined Specifications) 86

Figure 7-1 Rules Form—Counting Physical Source Lines 104

Figure 7-2 Rules Form—Counting Logical Source Statements 105

Figure 7-3 Practices Used to Identify Inoperative Elements 106

Figure 8-1 Recording Form for Data Spec A 108

Figure 8-2 Recording Form for Data Spec B 109

Figure 8-3 Recording Form for Data Spec C 111

Figure 8-4 A Generalized Form for Recording Measurements of Source
Code Size 113

Figure 9-1 Summary Size Report 116

Figure 9-2 Summary Reporting Form for Data Spec A (Project Tracking) 119

Figure 9-6 Request for a Summary Report of Attribute Totals 127

CMU/SEI-92-TR-20 169

Definition Checklist for Source Statement Counts

Definition name: Date:
Originator:

Measurement unit: Physical source lines
Logical source statements B

Statement type Definition | | Data array | |
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3
4
5
6
7
8
9

10
11
12

Declarations
Compiler directives
Comments

On their own lines
On lines with source code
Banners and nonblank spacers
Blank (empty) comments

Blank lines

Definition [Data array [

Includes

mm* m *s ='
!•:•>»>:•>:•:•:•:•:•:•:•}•:•!•:•:•

Excludes

How produced
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Includes Excludes

Origin Definition [Data array [
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release

Commercial, off-the-shelf software (COTS), other than libraries
Government furnished software (GFS), other than reuse libraries
Another product
A vendor-supplied language support library (unmodified)
A vendor-supplied operating system or utility (unmodified)
A local or modified language support library or operating system
Other commercial library
A reuse library (software designed for reuse)
Other software component or library

Includes Excludes

4
5
6
7
8
9

10
11
12
13
14

Data array [Usage Definition [
1 In or as part of the primary product
2 External to or in support of the primary product
3

Includes Excludes

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 1

Definition name:

Delivery Definition [Data array [
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes | Excludes

!

Functionality Definition [Data array [
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes

1111111111:11

Replications Definition [Data array [
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes

Development status Definition [Data array [
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

:x:>x:x£:£x::>:>:::;:::::::::::::::::::::

Language Definition [Data array [
List each source language on a separate line.

1

Includes Excludes

2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition name:
Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin...end and {...} pairs used as executable statements
5 Begin...end and (...) pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

C and C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a 'for* statement
4 Block statements (e.g., {...} with no terminating semicolon)
5 "{", "}", or "};" on a line by itself when part of a declaration
6 "{" or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

• .••••.,• •• ..-..-•., . .

The terms in this checklist are defined and discussed in CMU/SEI-92-TP.-20 Page 3

Definition name:
Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type->
2
3
4
5
6
7
8
9

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 4

Definition name:
Includes Excludes

1
2
3
4
5
6
7
8
9

10
11
12

Listed elements are assigned to
statement type ->

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 5

Definition Checklist for Source Statement Counts

Definition name: Physical Source Lines of Code
 (basic definition)

Date: 8/7/92
Originator: SEI

Measurement unit: Physical source lines
Logical source statements

*_

Statement type Definition | • | Data array | Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1 •

"'T . ^

3 •

4
11 i I i

•
5 •
6 •
7 •
8 •

How produced Definition | • | Data array | Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

•
•
•
•
•

•

Origin Definition (_•] Data array [
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

•MMH
•
•
•
•

•
•

•
•
•
•

Usage Definition | •! Data array [
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes
•

•
3

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 1

Definition name: Physical Source Lines of Code
(basic definition)

Delivery Definition [•] Data array [
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

•Tn^mi^^rni
•
•

::::::^:::l'::x::::::;:::::::::o::::::::::::::::::

•
•

Functionality Definition | •! Data array [
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
wmm

•

Replications Definition | •! Data array [
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition | •! Data array [
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

"'•"'
•
•
•
•
•
•

•

Language Definition [Data array | •!
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

v

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition name: Physical Source Lines of Code
(basic definition) Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin...end and {...} pairs used as executable statements
5 Begin...end and {...} pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

1 •
1 •
3 •
1 •
3 •
1 •
1 •
1 •
3 •
1 S
1 •
3 •
1 •

3 •
1 •
3 •
1 •
3 •
4 •

1 •
•

C and C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a 'for" statement
4 Block statements (e.g., {...} with no terminating semicolon)
5 "{", "}", or "};" on a line by itself when part of a declaration
6 "{" or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

1 •
1 •
1 •
1 •
3 •
1 •
4 •
4 •

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 3

Definition name: Physical Source Lines of Code
(basic definition) Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type->
2
3
4
5
6
7
8
9

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

3
:•:•:•:•:•:•:•:•:-:•:•:•:•:•;•:•:•:•:•:•:•:•:•:•:•:•:•:•

3 •

1 •
Jiiiltllli

3 •
3 •

liillilili!

1 •
:'• : -;:-\

3 •
3 •

1
The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 4

Definition name: Physical Source Lines of Code
 (basic definition) Includes Excludes

1
2
3
4
5
6
7
8
9

10
11
12

Listed elements are assigned to
statement type ->

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 5

Definition Checklist for Source Statement Counts

Definition name: Logical Source Statements Date:
 (basic definition) Originator:

8/7/92
SEI

Measurement unit: Physical source lines
Logical source statements

| •! Data array [
ithanone type,

Statement type Definition
When a line or statement contains morel
classify it as the type with the highest precedence.

1 Executable Order of precedence •
2 Nonexecutable
3
4
5
6
7
8
9

10
11
12

Declarations
Compiler directives
Comments

On their own lines
On lines with source code
Banners and nonblank spacers
Blank (empty) comments

Blank lines

Definition | • | Data array [

Includes Excludes

How produced
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Origin Definition | • | Data array [
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release

Commercial, off-the-shelf software (COTS), other than libraries
Government furnished software (GFS), other than reuse libraries
Another product
A vendor-supplied language support library (unmodified)
A vendor-supplied operating system or utility (unmodified)
A local or modified language support library or operating system
Other commercial library
A reuse library (software designed for reuse)
Other software component or library

Includes Excludes

4
5
6
7
8
9

10
11
12
13
14
Usage Definition | • | Data array | |

1 In or as part of the primary product
2 External to or in support of the primary product
3

Includes Excludes

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 1

Definition name: Logical Source Statements
(basic definition)

Delivery Definition !_•] Data array [
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
5

•
:j;:::::>;j:o:::::j:j::;o

•
•

Functionality Definition [_•] Data array [
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
mmmmmmm

•

Replications Definition \j/\ Data array [
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition I •! Data array [
Each statement has one and only one status,
usually that of its patent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

_

•
•
•
•
•
•

•

Language Definition [Data array | •!
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

v

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition name: Logical Source Statements
 (basic definition) Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin...end and {...} pairs used as executable statements
5 Begin...end and (...) pairs that delimit (sub)prcgram bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

C and C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a for* statement
4 Block statements (e.g., {...} with no terminating semicolon)
5 •{", "}", or "};" on a line by itself when part of a declaration
6 "{" or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

3

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 3

Definition name: Logical Source Statements
(basic definition) Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type ->
2
3
4
5
6
7
8
9

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

3 •

wiWmttm

3 •
:;x^Xv:v:;:%'x;Xo:^:;;;;;x^>:

1 •
3 •
3 •

1 •
3 •
3 •

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 4

Definition name: Logical Source Statements
 (basic definition) Includes Excludes

1
2
3
4
5
6
7
8
9

10
11
12

Listed elements are assigned to
statement type ->

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 5

Definition Checklist for Source Statement Counts

Definition name: Data Spec A: Project Tracking Example Date:
 (for tracking status vs. how produced) Originator:

8/7/92
SEI

Measurement unit: Physical source lines [
Logical source statements [

Statement type Definition | • | Data array | Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1 •

2
;:::>'::>:-:::::<o:'::>:-:o:o:::v:';::-:::'

•
3 •

4
:>x:!o:-x£:#::::::::-::::::::::::::::x:::

•
5 •
6 •
7 •
8 •

How produced Definition | Data array | • Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

•
•
•
•
•
•

Origin Definition | •! Data array [
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

•
\ '

•
•
•

•
•

•
•
•
•

Usage Definition [_•] Data array [
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes
•

•
3

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 1

Definition name: Data Spec A: Project Tracking Example
(for tracking status vs. how produced)

Delivery Definition \j/j Data array [
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
SSSB .

•
S':o:o:::::o:o:-:::':':o:^:-:-:^::::!^

•
•

Functionality Definition [_•] Data array [
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

„.,

•

Replications Definition !_•] Data array [
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 PostproductJon replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition [Data array | •!
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

""•""
•

•
•
•
•
•
•

Language Definition [Data array | •[
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

„ ^ •::':':>:::::-::::::'y:'^::v':.:::::

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition Checklist for Source Statement Counts

Definition name: Data Spec B: Project Analysis Example Date:
(end-of-project data used to improve future estimates) Originator:

8/7/92
SEI

Measurement unit: Physical source lines
Logical source statements

Statement type Definition [Data array | • |
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

Executable Order of precedence •
Nonexecutable

Declarations
Compiler directives
Comments

On their own lines
On lines with source code
Banners and nonblank spacers
Blank (empty) comments

Blank lines

1
2
3
4
5
6
7
8
9

10
11
12

Definition [Data array | •

Includes Excludes

How produced
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Origin Definition | • | Data array | |
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release

Commercial, off-the-shelf software (COTS), other than libraries
Government furnished software (GFS), other than reuse libraries
Another product
A vendor-supplied language support library (unmodified)
A vendor-supplied operating system or utility (unmodified)
A local or modified language support library or operating system
Other commercial library
A reuse library (software designed for reuse)
Other software component or library

Includes Excludes

4
5
6
7
8
9

10
11
12
13
14
Usage Definition | • |

1 In or as part of the primary product
2 External to or in support of the primary product
3

Data array [Includes Excludes

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Pagel

Definition name: Data Spec B: Project Analysis Example
(end-of-project data used to improve future estimates)

Delivery Definition [_•] Data array [
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
.:;;:;:;:v:::-:;:;:::-:::v::::x-::::Xv:;::::;

•
IIIIIIII

•
•

Functionality Definition | •! Data array [
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
•

•

Replications Definition [_•] Data array [
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition | •] Data array [
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

sSS::i:SIS:SS:?S WmmmmmM
•
•
•
•
•
•
•

•

Language Definition [Data array | •!
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

-• vi/"y

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition Checklist for Source Statement Counts

Definition name: Data Spec C: Reuse Measurement
 Example

Date: 8/7/92
Originator: SEI

Measurement unit: Physical source lines [
Logical source statements [

Statement type Definition | • | Data array | Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1
:':o:o:':-:-:o:^:-:^^:::$i:::::x:>

•

T" •
ilillliilli

3 •

"4"
"im ^ •

5 •
6 •
7 •
8 •

How produced Definition | Data array | • Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

•
•
•
•
•
•

Origin Definition [Data array | •!
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

Includes Excludes
•

;:::::::::::::::::;:::::;::::::::::::::::::::>:;:::v:
•::>:o:-:-:-::>::x'x->x::-:-::-:::-x-:-x

 •
iiiiiiili!

•
•
•

•
•

•
•
•
•

Usage Definition | •] Data array [
1 In or as part of the primary product
2 External to or in support of the primary product

Includes Excludes
•

•
3

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Pagel

Definition name: Data Spec C: Reuse Measurement
Example

Delivery Definition • Data array
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
•

mmmMmm
•
•

Functionality Definition | •] Data array [
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

•
::';::::::;:::;:::::;

•

Replications Definition | •! Data array [
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition | •] Data array [
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

"""""•"""
•
•
•
•
•
•

•

Language Definition [Data array | •]
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

:•,:

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11 I

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition Checklist for Source Statement Counts

Definition name: Data Spec B+C: Project Analysis
 (combined specifications)

Date: 8/7/92
Originator: SEI

Measurement unit: Physical source lines
Logical source statements B

Statement type Definition [Data array | • 1
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence->
2 Nonexecutable
3
4
5
6
7
8
9

10
11
12

Declarations
Compiler directives
Comments

On their own lines
On lines with source code
Banners and nonblank spacers
Blank (empty) comments

Blank lines

Definition [Data array | •

Excludes

How produced
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Origin Definition [Data array | • |
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release

Commercial, off-the-shelf software (COTS), other than libraries
Government furnished software (GFS), other than reuse libraries
Another product
A vendor-supplied language support library (unmodified)
A vendor-supplied operating system or utility (unmodified)
A local or modified language support library or operating system
Other commercial library
A reuse library (software designed for reuse)
Other software component or library

Includes

4
5
6
7
8
9

10
11
12
13
14

Excludes

Usage Definition [_•
1 In or as part of the primary product
2 External to or in support of the primary product
3

Data array Includes Excludes

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 1

Definition name: Data Spec B+C: Project Analysis
(combined specifications)

Delivery Definition | •! Data array [
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Includes Excludes

•
•

•
•

Functionality Definition | •! Data array [
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Includes Excludes
•

_,.,

•

Replications Definition !_•] Data array [
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Includes Excludes
•
•

•
•

Development status Definition [_•] Data array [
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

Includes Excludes

" •
•
•
•
•
•
•

•

Language Definition [Data array | •!
List each source language on a separate line.

1 Separate totals for each language
2 Job control languages

Includes Excludes

1/
:-: ; m

3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Rules for Counting Physical Source Lines
For each source language to which the definition applies, provide the following information:

Language name:

Note: This information is required only for statement types that are excluded from counts or for
which individual counts are recorded.

Executable lines: List the rules used to identify
executable lines. If special rules are used for
constructs such as block statements, embed-
ded statements, empty statements, or embed-
ded comments, describe them.

Declarations: List the rules used to identify
declaration lines. Explain how declarations are
distinguished from executable statements.

Compiler directives: List the rules used to
identify compiler directives.

Comments: List the rules used to identify
beginnings and endings of comments.

Modified comments: If separate counts are
made for modified lines, list the rules used to
keep modifications to comments on lines with
other code from being classified as modified
statements of higher precedence.

Special rules: List any special rules that are
used to classify the first or last statements of
any sections of code.

Rules for Counting Logical Source Statements
For each source language to which this definition applies, provide the following information:

Language name:

Executable statements: List all rules and
delimiters used to identify beginnings and
endings of executable statements. If special
rules are used for constructs such as block
statements, embedded statements, empty
statements, expression statements, or
subprogram arguments, describe them.

Declarations: List the rules and delimiters used
to identify beginnings and endings of declara-
tions. Explain how declarations are distin-
guished from executable statements.

Compiler directives: List the rules and delim-
iters used to identify beginnings and endings of
compiler directives.

Comments: If comments are counted, list the
rules used to identify beginnings and endings
of comment statements. Explain how, if at all,
comment statements differ from physical
source lines.

Special rules: List any special rules or delim-
iters that are used to identify the first or last
statements of any sections of code.

Exclusions: List all keywords and symbols that,
although set off by statement delimiters, are
not counted as logical source statements.

Practices Used to Identify Inoperative Elements
List or explain the methods or rules used to identify:
Intentionally bypassed statements and declarations

Unintentionally included dead code
A. Unreachable, bypassed, or unreferenced elements (declarations, statements, or data stores)

within modules:

B. Unused, unreferenced, or unaccessed modules or include files in code libraries:

C. Unused modules, procedures, or functions, linked into delivered products:

Source Code Size Recording Form

Q Physical source lines Q Logical source statements

Product name:

Module name:

Definition name: E >ata Spec A (project tracking)

stimated By:

Version:

Version:

Dated:

Max. line

8/7/92

Source language:

LJ Measured LJ E

i length: characters

Date:

How measured (list tool! >u<

nc

>d:

s

ted):

Inoperative code: LJ

If excluded, how identify

uded LJ Excluded, unless functional LJ Excluded LJ Don't know

Measurement results:
Totals (excluding comment

How produced

Programmed Generated Converted Copied Modified Removed

& blanks)

Delivery

Delivered as source

Delivered as executable

Not delivered, controlled

Not delivered,

not controlled

a
•
a

a

Usage

In primary product •

External to product •

Development status

Estimated or planned Q

Designed •

Coded •

Unit tests completed •

Integrated into CSCs Q

Test readiness reviewed Q

CSCI tests completed •

Module size System tests completed Q

Source Code Size Recording Form

Q Physical source lines Q Logical source statements

Product name:

Module name:

Definition name: Data Spec B (project analysis)

Source language:

Version:

_Version:

Dated: 8/7/92

D Measured LI Estimated By:

How measured (list tools used):

Max. line length:

Date:

characters

Inoperative code: LI Included LI Excluded, unless functional LI Excluded Li Don't know

If excluded, how identified:

Measurement results: How produced

Statement type Programmed Generated Converted Copied Modified Removed

Executable

Declaration

Compiler directive

Comment on own line

Comment on code line

Delivery Usage Development status
Delivered as source • In primary product Q Estimated or planned •
Delivered as executable G External to product Q Designed a
Not delivered, controlled a Coded a
Not delivered, Unit tests completed •

not controlled • Integrated into CSCs

Test readiness reviewed

a
a

CSCI tests completed

System tests completed

a
Module size a

Source Code Size Recording Form

Q Physical source lines Q Logical source statements

Product name:

Module name:

Definition name: Data Spec C (reuse measurement)

Source language:

Version:

_ Version:

Dated: 8/7/92

U Measured U Estimated By:

How measured (list tools used):

Max. line length:

Date:

characters

Inoperative code: LJ Included U Excluded, unless functional LI Excluded LJ Don't know

If excluded, how identified:

Measurement results (executable statements

plus declarations plus compiler directives): How Produced

Origin Programmed Generated Converted Copied

New: no prior existence

Previous version, build, or release

Commercial, off-the-shelf software

Government furnished software

Another product

Local or modified lang. library or O/S

Other commercial library

Reuse library

Other component or library

Modified Removed

Delivery Usage Development status

Delivered as source a In primary product • Estimated or planned •
Delivered as executable a External to product • Designed •
Not delivered, controlled • Coded a
Not delivered, Unit tests completed a

not controlled • Integrated into CSCs

Test readiness reviewed

a
a

noncomment, nonblank statements

CSCI tests completed

System tests completed

a
Module size •

Source Code Size Recording Form

Q Physical source lines Q Logical source statements

Product name:

Module name:

Definition name:

Source language:

Version:

Version:

Dated:

LI Measured U Estimated By:

How measured (list tools used):

Max. line length:

Date:

characters

Inoperative code: U Included U Excluded, unless functional U Excluded U Don't know

If excluded, how identified:

Measurement results

Statement type

How produced

Programmed Generated Converted Copied Modified Removed

Executable

Declarations

Compiler directives

Comments

on their own lines

on lines with code

banners & spacers

blank comments

Blank lines

Origin Delivery Development status

New: no prior existence Delivered as source •

Delivered as executable •

Not delivered, controlled •

Not delivered,

not controlled •

Usage

In primary product LI

External to product •

1

Estimated or planned l_]

Previous version, build, or release Designed U

Commercial, off-the-shelf software Coded J

Government furnished software Unit tests completed •

Another product Integrated into CSCs Q

Vendor-supplied language library Test readiness reviewed •

Vendor-supplied O/S (unmodified) CSCI tests completed L)

Local or modified lang. library or O/S System tests completed •

Other commercial library

Reuse library

Other component or library lodule size

Data Summary—Source Code Size

Module ID
Language:

Date counted:
Reported by:

Measured as:
1 1 Physical source lines

J Logical statements
Totals
include

Totals
exclude

Individual
totals

Counted
Estimated
Total

Statement type
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations
4 Compiler directives
5 Comments
6 On their own lines
7 On lines with source code
8 Banners and nonblank spacers
9 Blank (empty) comments

10 Blank lines
11
12

1

2
3

4
5
6
7
8

How produced
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

lll!s$:£;

Origin
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14

:

lillll

Usage
1 In or as part of the primary product
2 External to or in support of the primary product

:::.;L;:.:.;>;.-::::::;;::::::::;;:::::::::::-

3

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Pagel

Module ID
Language:

Totals
include

Totals
exclude

:'"'".'.l;l;;l;;,""ll

Individual
totals

Delivery
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Functionality
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Replications
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5 __T^___

Development status
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11
Language

List each source language on a separate line.
1
2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Module ID Totals
include

Totals
exclude

Individual
totals Language:

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin...end and (...) pairs used as executable statements
5 Begin...end and (...) pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16

Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

C and C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a "for" statement
4 Block statements (e.g., (...) with no terminating semicolon)
5 "{", "}", or "};" on a line by itself when part of a declaration
6 "{" or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, tifdef, and #ifndef
9

10
11
12

:-:o:-:v:-:-:-::-:.x-::-:-:-:-:-:-:-:-:-:-:

sliilisiiS*:

:. : ::•'• .•.:•':' '-

^

^xox^x^x^x;

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 3

Module ID
Language:

Totals
include

Totals
exclude

Individual
totals

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type ->
2
3
4
5
6
7
8
9

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

!^^^TrTT^WTl!

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 4

Module ID
Language:

Totals
include

Totals
exclude

Individual
totals

1
2
3
4
5
6
7
8
9

10
11
12

Listed elements are assigned to
statement type ->

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 5

Source Code Size Reporting Form

(J Physical source lines Q Logical source statements

Product or module name:

Definition name: Data Spec A (project tracking)

Source language:

Version:

Dated: 7/9/92

U Measured U Estimated By:

How measured (list tools used):

Max. line length:

Date:

characters

Inoperative code: U Included U Excluded, unless functional U Excluded LI Don't know

If excluded, how identified:

Delivery

Delivered

Not delivered

Measurement results:
Development Status

Coded

Unit tests completed

Integrated into CSCs

Test readiness reviewed

CSCI tests completed

System tests completed

Total

•
a

Usage

In primary product •

External to product •

How produced

Total Removed

Programmed Generated Converted Copied Modified Total

Data Summary Request—Source Code Size

Definition name: Date:

Originator:

Measured as:
B Physical source lines

Logical statements

Counted
Estimated
Total

Totals
include

Totals
exclude

Individual
totals

Statement type
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence ->
2 Nonexecutable
3 Declarations

Compiler directives
Comments

On their own lines
On lines with source code
Banners and nonblank spacers
Blank (empty) comments

Blank lines

4
5
6
7
8
9

10
11
12
How produced

1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8 1.'."".'.".".'.'.

Origin
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release

Commercial, off-the-shelf software (COTS), other than libraries
Government furnished software (GFS), other than reuse libraries
Another product
A vendor-supplied language support library (unmodified)
A vendor-supplied operating system or utility (unmodified)
A local or modified language support library or operating system
Other commercial library
A reuse library (software designed for reuse)
Other software component or library

4
5
6
7
8
9

10
11
12
13
14
Usage

1 In or as part of the primary product
2 External to or in support of the primary product
3

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Pagel

Definition name: Totals

Include

Totals

exclude

Individual

totals

Delivery
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

liiilil iiiiJiiii:

x*:*:*:*:o:*:*:*#:
• -«**

I

Functionality
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

illffllll

iiliiillil

Replications
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

.'.•.•'.• JBSSKSSSSS :::::::;::;:::>::::::o::::::::;::v:y>::::::;

Development status
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11

•'••'•;:;:::;>>;lli:'i!
KBSSKSBSBS:

Language
List each source language on a separate line.

1

:::::;:'

2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 2

Definition name: Totals

include

Totals

exclude

Individual

totals

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type ->
2 Empty statements (e.g.,";;" and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin...end and {...} pairs used as executable statements
5 Begin...end and {...} pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin...end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

Cand C++
1 Null statement (e.g.,";" by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a "for" statement
4 Block statements (e.g., {...} with no terminating semicolon)
5 "{". T. or T." on a line by itself when part of a declaration
6 "{" or "}" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 3

Definition name: Totals

include

Totals

exclude

Individual

totals

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type ->
2
3
4
5
6
7
8
9

COBOL
1 "PROCEDURE DIVISION", "END DECLARATIVES", etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

mmBiMm

lllllllllil:

'••:•:'••:• x:;:: ^^•ivixixiSiS/iviv:;:;:

iliillii £:v£::;:::':-. iiiiiiii

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 4

Definition name: Totals
include

Totals
exclude

Individual
totals

Listed elements are assigned to
1 statement type ->
2
3
4
5
6
7
8
9

10
11
12

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto's, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN'S END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and "with" statements.
Languages like Ada, C, C++, and Pascal have block statements [begin...end and {...}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler's or compiler's
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin...end and {...} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada's pragma and COBOL's COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

The terms in this checklist are defined and discussed in CMU/SEI-92-TR-20 Page 5

UNLIMITED, UNCLASSIFIED
SECURITY CL ASSIFIC ATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
It. REPORT SECURrry CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORrTY

N/A
2b. DECLASSmCATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUnON/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S

CMU/SEI-92-TR-20

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-92-020

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (City, State and ZIP Code)

ESC/AVS
Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESD/AVS

9. PROCUREMENT INSTRUMENT IDENnFICATION NUMBER

F1962890C0003

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.
N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

Software Size Measurement: A Framework for Counting Source Statements

12. PERSONAL AUTHOR(S)
Robert E. Park, et al

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

September 1992
IS. PAGE COUNT

210
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

software metrics, software size, software measure, software measure-
ment, lines of code, LOC, source lines of code, SLOC, source state-
ments, source code size, software planning and tracking

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report presents guidelines for defining, recording, and reporting two frequently used measures of software
size-physical source lines and logical source statements. We propose a general framework for constructing
size definitions and use it to derive operational methods can be applied to address the information needs of
different users while maintaining a common definition of software size.

(please turn over)

20. DISTRBUnON/AVAILABILrTY OF ABSTRACT

UNCLASSIFIIiD/UNITMITED SAME AS RPTDTIC USERS i

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7631
22c. OFFICE SYMBOL

ESC/AVS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OFTHIS

